996 resultados para Structure modulation
Resumo:
Previously, it has been shown that laminin will self-assemble by a two-step calcium-dependent process using end-domain interactions (Yurchenco, P. D., Tsi-library, E. C., Charonis, A. S., and Furthmayr, H. (1985) J. Biol. Chem. 260, 7636-7644). We now find that heparin, at low concentrations, modifies this polymerization by driving the equilibrium further toward aggregation, by producing a denser polymer, and by inducing aggregation in the absence of calcium. This effect on self-assembly is specific in that it is observed with heparin but not with several heparan sulfates or other glycosaminoglycans: it correlates with affinity and depends on the degree of polysaccharide sulfation. Heparin binds to laminin in a calcium-dependent manner with a single class of interaction (KD = 118 +/- 18 nM) and with a binding capacity of one heparin for two laminins. We find the long arm globule (E3) is the only laminin domain which exhibits substantial heparin binding: heparin binds E3 with an affinity (KD = 94 +/- 12 nM) and calcium dependence similar to that for intact laminin. These data strongly suggest that heparin modifies laminin assembly by binding to pairs of long arm globular domains. As a result the polymer may be stabilized at domain E3 and laminin interdomain interactions induced or modified. We further postulate that heparins may act in vivo as specific regulators of the structure and functions of basement membranes by both altering the laminin matrix and by displacing weakly binding heparan sulfates.
Resumo:
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^
Resumo:
In this paper we report the experimental results obtained when an He-Ne laser beam crosses an MBBA homeotropic sandwich structure and is modulated by the influence of another laser beam, in our case an Ar+ laser, crossing through the same region. We extend some results previously reported by us1 2 concerning the influence of the ratio of the diameters of the laser beams on the modulation characteristics. A theoretical model, based on the one reported in Ref6 , shows good agreement with the experimental results. If the Ar+ laser is intensity chopped, the resulting He-Ne diffracted image is also intensity modulated. The highest frequency observed has been 500 p. p. s.
Resumo:
In this letter, we propose and experimentally demonstrate a novel and single structure to generate ultra-wideband (UWB) pulses by means of the cross-phase modulation present in a semiconductor optical amplifier unified structure. The key components of this system is an integrated Mach-Zehnder interferometer with two semiconductor optical amplifiers and an optical processing unit. The fusion of these two components permits the generation and customization of UWB monocycle pulses. The polarity of the output pulses is easily modified through the single selection of a specific input port. Moreover, the capacity of transmitting several data sequences is demonstrated and the potentiality to adapt the system to different modulation formats is analyzed.
Resumo:
Convincing evidence has accumulated to identify the Frizzled proteins as receptors for the Wnt growth factors. In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified. One of these proteins, Frzb-1, binds Wnt-1 and Xwnt-8 proteins and antagonizes Xwnt-8 signaling in Xenopus embryos. Here we report that Frzb-1 blocks Wnt-1 induced cytosolic accumulation of β-catenin, a key component of the Wnt signaling pathway, in human embryonic kidney cells. Structure/function analysis reveals that complete removal of the frizzled domain of Frzb-1 abolishes the Wnt-1/Frzb-1 protein interaction and the inhibition of Wnt-1 mediated axis duplication in Xenopus embryos. In contrast, removal of the C-terminal portion of the molecule preserves both Frzb-Wnt binding and functional inhibition of Wnt signaling. Partial deletions of the Frzb-1 cysteine-rich domain maintain Wnt-1 interaction, but functional inhibition is lost. Taken together, these findings support the conclusion that the frizzled domain is necessary and sufficient for both activities. Interestingly, Frzb-1 does not block Wnt-5A signaling in a Xenopus functional assay, even though Wnt-5A coimmunoprecipitates with Frzb-1, suggesting that coimmunoprecipitation does not necessarily imply inhibition of Wnt function.
Resumo:
Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of βCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function.
Resumo:
Ca2+ and its ubiquitous intracellular receptor calmodulin (CaM) are required in the nervous system, among a host of cellular responses, for the modulation of several important enzymes and ion channels involved in synaptic efficacy and neuronal plasticity. Here, we report that CaM can be replaced by the neuronal calcium sensor NCS-1 both in vitro and in vivo. NCS-1 is a calcium binding protein with two Ca(2+)-binding domains that shares only 21% of homology with CaM. We observe that NCS-1 directly activates two Ca2+/CaM-dependent enzymes (3':5'-cyclic nucleotide phosphodiesterase and protein phosphatase calcineurin). Co-activation of nitric oxide synthase by NCS-1 and CaM results in a higher activity than with CaM alone. Moreover, NCS-1 is coexpressed with calcineurin and nitric oxide synthase in several neuron populations. Finally, injections of NCS-1 into calmodulin-defective cam1 Paramecium partially restore wildtype behavioral responses. With this highly purified preparation of NCS-1, we have obtained crystals suitable for crystallographic structure studies. NCS-1, despite its very different structure, distribution, and Ca(2+)-binding affinity as compared with CaM, can substitute for or potentiate CaM functions. Therefore, NCS-1 represents a novel protein capable of mediating multiple Ca(2+)-signaling pathways in the nervous system.
Resumo:
We found that a variety of cholecystokinin (CCK) receptor ligands bind to bovine serum albumin (BSA). This binding was rapid, fully reversible, temperature independent, of low affinity, and specific for BSA; it depended on the concentration of BSA, the chemical structure of the ligand, and the chemical composition of the incubation medium. BSA also decreased the binding of 125I-labeled CCK octapeptide (125I-CCK-8) to CCK receptors on pancreatic acini and membranes but increased the potency with which CCK-8 inhibited binding of 125I-CCK-8. These counterintuitive findings appeared to result from BSA altering the affinities of CCK-8 for different affinity states of the pancreatic CCK receptor. An alternate hypothesis is that BSA increased the efficacy of CCK-8 such that it bound to receptors and also caused biochemical changes in other receptors that reduced their ability to bind 125I-CCK-8. BSA enhanced the ability of CCK-8 to stimulate amylase secretion from pancreatic acini and to cause contraction of dispersed gastric smooth muscle cells. Thus, CCK can bind to BSA, and the BSA-CCK complex has substantially different activities from the free, uncomplexed hormone.
Resumo:
Rat skeletal muscle selenoprotein W cDNA was isolated and sequenced. The isolation strategy involved design of degenerate PCR primers from reverse translation of a partial peptide sequence. A reverse transcription-coupled PCR product from rat muscle mRNA was used to screen a muscle cDNA library prepared from selenium-supplemented rats. The cDNA sequence confirmed the known protein primary sequence, including a selenocysteine residue encoded by TGA, and identified residues needed to complete the protein sequence. RNA folding algorithms predict a stem-loop structure in the 3' untranslated region of the selenoprotein W mRNA that resembles selenocysteine insertion sequence (SE-CIS) elements identified in other selenocysteine coding cDNAs. Dietary regulation of selenoprotein W mRNA was examined in rat muscle. Dietary selenium at 0.1 ppm as selenite increased muscle mRNA 4-fold relative to a selenium-deficient diet. Higher dietary selenium produced no further increase in mRNA levels.
Resumo:
Les prostaglandines modulent d’importants rôles physiologiques. Elles sont aussi impliquées dans le développement d’une variété de conditions pathologiques telles l’inflammation, la douleur et le cancer. La prostaglandine PGF2α et son récepteur (récepteur FP) se trouvent impliqué dans la modulation de nombreuses pathologies tels lors de l’accouchement préterme et le cancer colorectal. Récemment, nous avons fait partie d’un groupe de recherche ayant développé des modulateurs allostériques du récepteur FP. Dans une première étude, l’action du PGF2α sur le déclenchement des contractions myométriales a été évaluée, car peu d’information est connue sur la signalisation de cette prostaglandine lors de l’accouchement. Ainsi, nous avons utilisé un peptidomimétique de la deuxième boucle extracellulaire, dénommée PDC113.824. Nos résultats ont démontré que le PDC113.824 permettait de retarder la mise bas chez des souris gestantes, mais agissait de manière différente sur les multiples voies de signalisation de la PGF2α. Ainsi, le PDC113.824 inhibait la voie RhoA-ROCK, dépendante de l’activation de la protéine Gα12 par le. Les protéines RhoA-ROCK sont des acteurs clés dans le remodelage du cytosquelette d’actine et des contractions myométriales lors de l’accouchement. De plus, le PDC113.824 en présence de PGF2α agit comme un modulateur positif sur la voie dépendante de l’activation de la protéine Gαq. Le PDC113.824 serait donc un modulateur allostérique non compétitif possédant des actions à la fois de modulateurs positifs et négatifs sur la signalisation du récepteur FP Dans une seconde étude, des analogues du PDC113.824 ont été conçus et analysés dans un second modèle pathologique, le cancer colorectal. Ce cancer possède de hauts niveaux de récepteur FP. Nous avons donc étudié le rôle du récepteur FP dans le développement et la progression du cancer colorectal et l’effet de modulateurs allostériques. Il est généralement accepté que dans le cancer colorectal, la prostaglandine PGE2 permet la croissance et l’invasion tumorale, ainsi que l’angiogenèse. Toutefois, peu d’informations sont connues sur le rôle du PGF2α dans le cancer colorectal. C’est dans ce contexte que nous avons décidé d’examiner la contribution de ce récepteur dans la progression du cancer colorectal et cherché à déterminer si la modulation des fonctions du récepteur FP a un impact sur la croissance de tumeurs colorectales. Nos recherches ont révélé que l’activation du récepteur FP permet la migration et la prolifération de plusieurs lignées cellulaires humaines et murines d’adénocarcinomes colorectaux. Dans ce contexte, nos expériences ont démontré que la migration des cellules cancéreuses était dépendante de l’activation de la voie Rho. Nos résultats démontrent qu’en effet, l’activation de RhoA, une petite GTPase clé de la voie Gα12, est inhibée de façon sélective par nos composés. De plus, nos molécules allostériques sont également efficaces pour inhiber la voie de signalisation de la ß-caténine, une protéine impliquée dans la genèse du cancer colorectal. In vivo, le traitement de souris avec un des ces modulateurs a permis une inhibition effective de la croissance tumorale. Dans l’ensemble, nos résultats suggèrent donc que les modulateurs allostériques des récepteurs FP pourraient constituer une nouvelle classe de médicaments utilisés pour le traitement du cancer colorectal.
Resumo:
The structures of multilayer Langmuir-Blodgett films of barium arachidate before and after heat treatment have been investigated using both atomic force microscopy (AFM) and grazing incidence synchrotron X-ray diffraction (GIXD). AFM gave information on surface morphology at molecular resolution while GIXD provided quantitative details of the lattice structures of the films with their crystal symmetries and lattice constants. As-prepared films contained three coexisting structures: two triclinic structures with the molecularchains tilted by about 20degrees from the film normal and with 3 x 1 or 2 x 2 super-lattice features arising from height modulation of the molecules in the films; a rectangular structure with molecules perpendicular to the film surface. Of these, the 3 x 1 structure is dominant with a loose correlation between the bilayers. In the film plane both superstructures are commensurate with the local structures, having different oblique symmetries. The lattice constants for the 3 x 1 structure are a(s) = 3a = 13.86 Angstrom, b(s) = b = 4.31 Angstrom and gamma(s) = gamma = 82.7degrees; for the 2 x 2 structure a(s) = 2a = 16.54 Angstrom, b(s) = 2b = 9.67 Angstrom, gamma(s) = gamma = 88degrees. For the rectangular structure the lattice constants are a = 7.39 Angstrom, b = 4.96 Angstrom and gamma = 90degrees. After annealing, the 2 x 2 and rectangular structures were not observed, while the 3 x 1 structure had developed over the entire film. For the annealed films the correlation length in the film plane is about twice that in the unheated films, and in the out-of-plane direction covers two bilayers. The above lattice parameters, determined by GIXD, differed significantly from the values obtained by AFM, due possibly to distortion of the films by the scanning action of the AFM tip. (C) 2004 Published by Elsevier B.V.
Resumo:
Dipeptides can be absorbed into cells via the dipeptide transporter (which also transported tripeptides and dipeptide derivatives). The optimum conditions for measuring the inhibition of Gly-Pro uptake in Caco-2 cells were identified. A number of structure-activity relationships were identified. These included the effects of increasing the amino-acid chain-length, and the presence of a thiol or hydroxyl group in the side-chain increased IC50 while the presence of a hydroxyl group did not. The benzyl esters had lower or equal IC50 values compared to the parent dipeptides while the methyl esters had higher values. These results indicated that while molecular properties did affect IC50, the size, charge and composition of three particular groups caused the most significant effects, supporting the structure-activity relationship identified. An assay was developed using calcein-AM to show the inhibition of p-glycoprotein activity. There was no significant change due to the presence of mannitol but there was in the presence of clyclosporin A (p<0.01). Incubating the cells with the test solution for 30 minutes before the addition of the ester resulted in a significant (p<0.001) difference. The assay was specific for p-glycoprotein, as the presence MRP inhibitors had no effect (p>0.05). The modified protocol allowed the identification of p-glycoprotein inhibitors quickly and simply using a cell suspension of unmodified cells. The clinically relevant buffering of grapefruit juice to pH 7 led to a four-fold increase in intracellular calcein and hence significant inhibition of p-glycoprotein. Buffered orange and lemon juices had no effect on the assay. Flavone derivatives had previously been found to be inhibitors of CYP3A4 yet neither naringin nor naringenin had any significant effect at concentrations found in grapefruit juice. Of the other (non-grapefruit) flavone derivatives tested, hesperidin, found in orange juice, had no significant effect, kaempferol and rutin also had no effect while genistein significantly inhibited p-glycoprotein (results that support previous studies). Hydroxycinnamic acids had no effect on p-glycoprotein. Studies on other compounds found that the balance between inhibiting p-glycoprotein and disrupting cell membranes depends on the compound containing an oxygen atom and the size of the negative charge on it, as well as three-dimensional arrangement of the atoms.
Resumo:
For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.
Resumo:
Les protéines existent sous différents états fonctionnels régulés de façon précise par leur environnement afin de maintenir l‘homéostasie de la cellule et de l‘organisme vivant. La prévalence de ces états protéiques est dictée par leur énergie libre de Gibbs alors que la vitesse de transition entre ces états biologiquement pertinents est déterminée par le paysage d‘énergie libre. Ces paramètres sont particulièrement intéressants dans un contexte thérapeutique et biotechnologique, où leur perturbation par la modulation de la séquence protéique par des mutations affecte leur fonction. Bien que des nouvelles approches expérimentales permettent d‘étudier l‘effet de mutations en haut débit pour une protéine, ces méthodes sont laborieuses et ne couvrent qu‘une fraction de l‘ensemble des structures primaires d‘intérêt. L‘utilisation de modèles bio-informatiques permet de tester et générer in silico différentes hypothèses afin d‘orienter les approches expérimentales. Cependant, ces méthodes basées sur la structure se concentrent principalement sur la prédiction de l‘enthalpie d‘un état, alors que plusieurs évidences expérimentales ont démontré l‘importance de la contribution de l‘entropie. De plus, ces approches ignorent l‘importance de l‘espace conformationnel protéique dicté par le paysage énergétique cruciale à son fonctionnement. Une analyse des modes normaux peut être effectuée afin d‘explorer cet espace par l‘approximation que la protéine est dans une conformation d‘équilibre où chaque acide aminé est représenté par une masse régie par un potentiel harmonique. Les approches actuelles ignorent l‘identité des résidus et ne peuvent prédire l‘effet de mutations sur les propriétés dynamiques. Nous avons développé un nouveau modèle appelé ENCoM qui pallie à cette lacune en intégrant de l‘information physique et spécifique sur les contacts entre les atomes des chaînes latérales. Cet ajout permet une meilleure description de changements conformationnels d‘enzymes, la prédiction de l‘effet d‘une mutation allostérique dans la protéine DHFR et également la prédiction de l‘effet de mutations sur la stabilité protéique par une valeur entropique. Comparativement à des approches spécifiquement développées pour cette application, ENCoM est plus constant et prédit mieux l‘effet de mutations stabilisantes. Notre approche a également été en mesure de capturer la pression évolutive qui confère aux protéines d‘organismes thermophiles une thermorésistance accrue.
Resumo:
Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.