980 resultados para Structural traps (Petroleum geology)
Resumo:
This paper is belonging to Chinese Petrochemical Corporation's science and technology project. Although it is difficult, it has important theoretical and practical value. The study was aimed to reveal inhomogeneity of two kinds of reservoirs of fan-shaped delta and braided river by using new theories, new methods and new technology about 3-D model building and reservoir knowledge repository throughout the world, and to build reservoir knowledge repository and 3-D geological model which would predict the type of sand body forming reason and distribution rule in order to improve exploration result in Qiuling oil fields. Multi-discipline theories such as petroleum structure geology, reservoir geology, petroleum geology, sequence geology, logging geology, geomathematics and so on are used as guide. The information of geology, seism, logging and production test is combined. Outcrop area and overlap area are combined. By making full use of computer, stable structure, reservoir geometric shape, spatial distribution and inhomogeneity of bed of interest are investigated, described and characterized. Petroleum pool 3-D static geological model of reservoir knowledge repository was built. Sand body distribution was predicted. It has guided oil development, lowed the investment and improved development benefits. Several results are achieved as follows: (1) Strata framework of Sanjianfang group in Qiuling oil field has been established. (2) Geometric shape, spatial distribution and evolve rule of two different forming reason's reservoir of fan-shaped delta and braided river of Sanjianfang group in Qiuling oil field are discussed. (3) The two kinds of reservoirs have lower pore and permeability and very strong inhomogeneity. (4) Reservoir knowledge repository of two different forming reasons has been built of Sanjianfang group, which includes 5 geological knowledge sublibrary. (5) 3-D geological model of two kinds of forming reason's reservoirs has been built. (6) That same sequence instruction a simulation and probability field were used to predict sand body of Sanjianfang group was put forward. Coincidence rate is high after production test. It shows this method has great popularity value. (7) A set of theories, methods and technologies of knowledge repository of two kinds of reservoir of braided river and fan-shaped delta and 3-D geological model building were finished. (8) A set of theories, methods and technologies of investigating, describing, characterizing and predicting two kinds of oil pool were developed. It gets noticeable economic benefit after exploration. Theory and method about extrusion basin are developed.
Resumo:
By applying synthetically multi-subject theories, methods and technology, such as petroleum geology, sedimentology, seep mechanics, geochemistry, geophysics and so on; and by making full use of computer; combining quantity and quality, macroscopic and microscopic, intensive static and active description, comprehensive studying and physical modeling, 3 dimension and 4 dimension description; the paper took Wen-33 block of Zhongyuan oil field as an example; and studied reservoir macroscopic and microscopic parameter changing rule and evolve mechanics in different water-blood stage. The reservoir dynamic model and remaining-oil distribution mode was established, and several results were achieved as follows: (1) Three types of parameter gaining, optimizing and whole data body of Wen33th reservoir were established. Strata framework, structure framework, reservoir types and distribution of Wen33th reservoir were discussed. Reservoir genesis types, space distribution law and evolve rule of Wen33th reservoir were explained. 4D dynamic model of macroscopic parameter of reservoir flow dynamic geologic function of Wen33th reservoir was established. The macroscopic remaining-oil distribution and control factor was revealed. The models of the microscopic matrix field, pore-throat network field, fluid field, clay mineral field of Wen-33 block were established. The characters, changing rules and controlled factors in different water stage were revealed. The evolve rule and mechanics of petroleum fluid field in Wen-33 block reservoir were revealed. Macroscopic and microscopic remaining oil distribution mode of Wen-33 block were established. Seven types, namely 12 shapes of dynamic model of microscopic remaining oil were discussed, and the distribution of mover remaining oil was predicted. Emulation model: mathematical model and prediction model of Wen-33 block were established. The changing mechanics of reservoir parameter and distribution of remaining-oil were predicted. Firstly, the paper putting forward that the dynamic geologic function of petroleum development is the factor of controlling remaining-oil, which is the main factor leading to matrix field, network field, clay mineral field, fluid field, physic and chemical field, stress field and fluid field forming and evolving. (10) A set of theories, methods and technologies of investigating, describing, characterizing and predicting complex fault-block petroleum were developed.
Resumo:
Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonatesiliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using highresolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the welldeveloped shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the interreef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context.
Resumo:
Lower Cretaceous meandering and braided fluvial sandstones of the Nubian Formation form some of the most important subsurface reservoir rocks in the Sirt Basin, north-central Libya. Mineralogical, petrographical and geochemical analyses of sandstone samples from well BB6-59, Sarir oilfield, indicate that the meandering fluvial sandstones are fine- to very fine-grained subarkosic arenites (av. Q91F5L4), and that braided fluvial sandstones are medium- to very coarse-grained quartz arenites (av. Q96F3L1). The reservoir qualities of these sandstones were modified during both eodiagenesis (ca. <70oC; <2 km) and mesodiagenesis (ca. >70oC; >2km). Reservoir quality evolution was controlled primarily by the dissolution and kaolinitization of feldspars, micas and mud intraclasts during eodiagenesis, and by the amount and thicknessof grain-coating clays, chemical compaction and quartz overgrowths during mesodiagenesis. However, dissolution and kaolinitization of feldspars, micas and mud intraclasts resulted in the creation of intercrystalline micro- and mouldic macro-porosity and permeability during eodiagenesis, which were more widespread in braided fluvial than in meandering fluvial sandstones. This was because of the greater depositional porosity and permeability in the braided fluvial sandstones which enhanced percolation of meteoric waters. The development of only limited quartz overgrowths in the braided fluvial sandstones, in which quartz grains are coated by thick illite layers, retained high porosity and permeability (12-23 % and 30- 600 mD). By contrast, meandering fluvial sandstones underwent porosity loss as a result of quartz overgrowth development on quartz grains which lack or have thin and incomplete grain-coating illite (2-15 % and 0-0.1mD). Further loss of porosity in the meandering fluvial sandstones occurred as a result of chemical compaction (pressuredissolution) induced by the occurrence of micas along grains contacts. Otherdiagenetic alterations, such as the growth of pyrite, siderite, dolomite/ankerite and albitization, had little impact on reservoir quality. The albitization of feldspars may have had minor positive influence on reservoir quality throughthe creation of intercrystalline micro-porosity between albite crystals.The results of this study show that diagenetic modifications of the braided and meandering fluvial sandstones in the Nubian Formation, and resulting changes in reservoir quality, are closely linked to depositional porosity and permeability. They are also linked to the thickness of grain-coating infiltrated clays, and to variations in detrital composition, particularly the amounts of mud intraclasts, feldspars and mica grains as well as climatic conditions.
Resumo:
Knowledge of the native prokaryotes in hazardous locations favors the application of biotechnology for bioremediation. Independent strategies for cultivation and metagenomics contribute to further microbiological knowledge, enabling studies with non-cultivable about the "native microbiological status and its potential role in bioremediation, for example, of polycyclic aromatic hydrocarbons (HPA's). Considering the biome mangrove interface fragile and critical bordering the ocean, this study characterizes the native microbiota mangrove potential biodegradability of HPA's using a biomarker for molecular detection and assessment of bacterial diversity by PCR in areas under the influence of oil companies in the Basin Petroleum Geology Potiguar (BPP). We chose PcaF, a metabolic enzyme, to be the molecular biomarker in a PCR-DGGE detection of prokaryotes that degrade HPA s. The PCR-DGGE fingerprints obtained from Paracuru-CE, Fortim-CE and Areia Branca-RN samples revealed the occurrence of fluctuations of microbial communities according to the sampling periods and in response to the impact of oil. In the analysis of microbial communities interference of the oil industry, in Areia Branca-RN and Paracuru-CE was observed that oil is a determinant of microbial diversity. Fortim-CE probably has no direct influence with the oil activity. In order to obtain data for better understanding the transport and biodegradation of HPA's, there were conducted in silico studies with modeling and simulation from obtaining 3-D models of proteins involved in the degradation of phenanthrene in the transport of HPA's and also getting the 3-D model of the enzyme PcaF used as molecular marker in this study. Were realized docking studies with substrates and products to a better understanding about the transport mechanism and catalysis of HPA s
Resumo:
Hydrogeological prospecting in Northeast Brazil and in other crystalline terrains has been developed on the basis of structural and regional geology concepts that date back to the 50-60 decades and, as such, demand a natural re-evaluation and update. In this kind of terrain, the percolation and accumulation of ground water are controlled by fractures and other types of discontinuities, such as foliations and geological contacts that, through weathering, impart porosity and permeability to the rocks, allowing water flow and storage. Several factors should be considered in the process of locating water wells, as discussed in the literature. Among these, the kind of structures, fracture geometry (including aperture and connectivity) and their geological and chronological context. It is important to correlate fracture systems with the regional neotectonic framework. Fractures at low angle (sub parallel) with the principal stress axis (s1) are those which tend to open (actually they work as tension joints) and, in principle, would present major hydric potential; in the opposite side, fractures at high angle to s1 would behave as closed by a compressional component. Fractures diagonal to the compression and tension axes correspond to shear fractures and, due to their connectivity with second fractures, are also important in terms of hydric potential. Uplift followed by terrain denudation leads to decompression and a general tendency to open (aided by weathering processes) fractures and other rock discontinuities, at different orientations. Low angle fractures, formed in this context, are equally important to increase connectivity, collection of water and recharge of the aquifer systems. In a general way, an opening component (neotectonic or by terrain decompression) and several models to increase fracture connectivity correlate with a greater hydric potential of these structures. Together with parallel research, this thesis addresses models of ground water occurrence in crystalline terrains, either improving well established concepts like the (Riacho-Fenda model), but also stressing other possibilities, like the role of alluvium and paleo-regoliths (the Calha Elúvio-Aluvionar model) and of strongly altered, permo-porous zones placed at variable depths below the present surface, flanking several types of discontinuities, especially interconnected fracture arrays (the Bolsões de Intemperismo model). Different methodological approaches are also discussed in order to improve success rates in the location of water wells in crystalline terrains. In this methodological review, a number of case studies were selected in the eastern domain of the State of Rio Grande do Norte, involving the localities of Santa Cruz, Santo Antônio, Serrinha, Nova Cruz, Montanhas, Lagoa de Pedras and Lagoa Salgada. Besides the neotectonic analysis of brittle structures, this Thesis addresses the validation of remote sensing as a tool for ground water prospecting. Several techniques were tested in order to detect and select areas with higher potential for ground water accumulation, using Landsat 5-TM and RADARSAT images, besides conventional aerial photos. A number of filters were tested to emphasize lineaments in the images, improving their discrimination, to identify areas with higher overburden humidity, which could reflect subsurface water accumulation, as well as alluvium and other sedimentary covers that might act as recharge zones. The work started with a regional analysis with the orbital images, followed by analysis of aerial photos, up to a detailed structural study of rock exposures in the terrain. This last step involved the analysis of outcrops surrounding wells (in a ray of approximately 10 to 100 m) with distinct productivities, including dry examples. At the level required for detail, it was not possible to accomplish a statistical approach using the available well data catalogs, which lack the desired specific information. The methodology worked out in this Thesis must undergo a testing phase through location of new water wells. An increase in the success rates as desired will led to a further consolidation step with wider divulgation of the methodology to private companies and governmental agencies involved in ground water prospecting in crystalline terrains
Resumo:
The carbonatic rocks have great importance in petroleum geology, since most hydrocarbons reservoirs in the world are associated to this kind of rock. The new giant petroleum fields discovered in the Brazilian southeast Atlantic margin are directly connected to calcareous rocks, which are subjacent to the Aptian evaporite pack. This demand an increase in the number of geologists able to study such deposits. The Aptian carbonatic platform is completely exposed only in the Sergipe-Alagoas Basin. Therefore, it works as a natural laboratory to the study and understanding of this kind of rock. The Sergipe Basin is situated in the east Brazilian coast, and has its evolutional history is intimately related to the formation of the South Atlantic Ocean, through the break-up of the Gondwana supercontinent. The marine sequence of the Brazilian marginal basins is of Albian age and is marked by the development of carbonatic platforms. In doing so, this paper aims to analyze the Albian limestones from Riachuelo Formation of the Sergipe Basin. The project gave to the student the opportunity to increase his knowledge in carbonates, due to the laboratory and outdoor activities. The studied deposits, within a regional outline, were petrografically described, allowing interpretations about the evolution of the former South Atlantic Ocean. Ten points were visited where samples were collected for making of thin sheets. In this work several carbonatic facies were identified totaling 116 laminates described.
Resumo:
Targeted sampling on the Dolgovskoy Mound (northern Shatsky Ridge) revealed the presence of spectacular laterally extensive and differently shaped authigenic carbonates. The sampling stations were selected based on sidescan sonar and profiler images that show patchy backscatter and irregular and discontinuous reflections in the near subsurface. The interpretation of acoustic data from the top part of the mound supports the seafloor observations and the sampling that revealed the presence of a complex subsurface plumbing system characterized by carbonates and gas. The crusts sampled consist of carbonate cemented layered hemipelagic sedimentary Unit 1 associated with several centimetres thick microbial mats. Three different carbonate morphologies were observed: (a) tabular slabs, (b) subsurface cavernous carbonates consisting of void chambers up to 20 cm**3 in size and (c) chimney and tubular conduits vertically oriented or forming a subhorizontal network in the subsurface. The methanogenic origin of the carbonates is established based on visual observations of fluids seepage structures, 13C depletion of the carbonates (d13C varying between -36.7 per mil and -27.4 per mil), and by thin carbonate layers present within the thick microbial mats. Laboratory experiments with a Hele-Shaw cell were conducted in order to simulate the gas seepage through contrasting grain size media present on the seafloor. Combined petrography, visual observations and sandbox simulations allowed a characterization of the dynamics and the structures of the plumbing system in the near subsurface. Based on sample observations and the experiments, three observed morphologies of authigenic carbonates are interpreted, respectively, as (a) Darcian porous flow through the finely laminated clayey/coccolith-rich layers, (b) gas accumulation chambers at sites where significant fluid escape was impeded by thicker clayey layers forming the laminated Unit1 and (c) focussed vertical fluid venting and subhorizontal migration of overpressured fluids released from (b). The Hele-Shaw cell experiments represent a promising tool for investigating shallow fluid flow pathways in marine systems.