998 resultados para Structural Masonry
Resumo:
One of the common pathologies of brickwork masonry structural elements and walls is the cracking associated with the differential settlements and/or excessive deflections of the slabs along the life of the structure. The scarce capacity of the masonry in order to accompany the structural elements that surround it, such as floors, beams or foundations, in their movements makes the brickwork masonry to be an element that frequently presents this kind of problem. This problem is a fracture problem, where the wall is cracked under mixed mode fracture: tensile and shear stresses combination, under static loading. Consequently, it is necessary to advance in the simulation and prediction of brickwork masonry mechanical behaviour under tensile and shear loading. The quasi-brittle behaviour of the brickwork masonry can be studied using the cohesive crack model whose application to other quasibrittle materials like concrete has traditionally provided very satisfactory results.
Resumo:
In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames based on the replacement of infill panels by K-bracing with vertical shear link. The performance of this technique is evaluated through experimental tests. A simplified numerical model for structural damage evaluation is also formulated according to the notions and principles of continuum damage mechanics. The proposed model is calibrated with the experimental results. The experimental results have shown an excellent energy dissipation capacity with the proposed technique. Likewise, the numerical predictions with the proposed model are in good agreement with experimental results.
Resumo:
This paper shows the results of an experimental analysis on the bell tower of “Chiesa della Maddalena” (Mola di Bari, Italy), to better understand the structural behavior of slender masonry structures. The research aims to calibrate a numerical model by means of the Operational Modal Analysis (OMA) method. In this way realistic conclusions about the dynamic behavior of the structure are obtained. The choice of using an OMA derives from the necessity to know the modal parameters of a structure with a non-destructive testing, especially in case of cultural-historical value structures. Therefore by means of an easy and accurate process, it is possible to acquire in-situ environmental vibrations. The data collected are very important to estimate the mode shapes, the natural frequencies and the damping ratios of the structure. To analyze the data obtained from the monitoring, the Peak Picking method has been applied to the Fast Fourier Transforms (FFT) of the signals in order to identify the values of the effective natural frequencies and damping factors of the structure. The main frequencies and the damping ratios have been determined from measurements at some relevant locations. The responses have been then extrapolated and extended to the entire tower through a 3-D Finite Element Model. In this way, knowing the modes of vibration, it has been possible to understand the overall dynamic behavior of the structure.
Resumo:
This paper presents a structural analysis of a masonry chimney built in the 1940s, which is currently being cataloged as local interest heritage. This structure has not served any industrial purpose for the last thirty years. The chimney is located in the town of Agost (Alicante - Spain) and directly exposed to the prevailing winds from the sea, as it is approximately 12 km away from the waterfront and there are not any significant barriers, which could protect the structure against the wind. There are longitudinal cracks and fissures all along the shaft because of the chimney’s geometrical characteristics, the effect of the masonry creep and especially the lack of maintenance. Moreover, there is also a permanent bending deformation in the upper 1/3 of the height due to the wind pressure. A numerical analysis for the static behavior against gravity and wind loads was performed using the structure’s current conditions after a detailed report of its geometry, its construction system and the cracking pattern. Afterwards, the dynamic behavior was studied, i.e. a seismic analysis using both response spectra and accelerograms in order to examine the structural stability. This work shows the pre-monitoring analysis before any experimental testing. Using the current results the future test conditions will be determined (e.g. number of sensors and monitoring point location, excitation systems, etc) prior to a possible structural reinforcement by applying composite material (fiber reinforced polymers).
Resumo:
The paper presents the analysis of an important historical building: the Saint James Theater in the city of Corfù (Greece) actually used as the Municipality House. The building, located in the center of the city, is made of carves stones and is characterized by a stocky shape and by the presence of wooden floors. The study deals with the structural identification of such structure through the analysis of its ambient vibrations recorded by means of accelerometers with high accuracy. A full dynamic testing was developed using ambient vibrations to identify the main modal parameters and to make a non-destructive characterization of this building. The results of these dynamic tests are compared with the modal analysis of a complex finite element (FE) simulation of the structure. This analysis may present several problems and uncertainties for this stocky building. Due to the presence of wooden floors, the local modes can be highly excited and, as a consequence, the evaluation of the structural modal parameters presents some difficulties.
Resumo:
According to the importance of rehabilitation and recovery of Architectural Heritage in the live of people, this paper is aimed to strengthen the traditional methods of stone vaults calculation taking advantage of the technological characteristics of the powerful program ANSYS Workbench. As an example of this, it could find out the possible pathologies that could arise during the construction history of the building. To limit this research, the upper vault of the main chapel of the Santiago parish church in Orihuela -Alicante- is selected as a reference which is a Jeronimo Quijano´s important building work in the XVI century in the Renaissance. Moreover, it is an innovative stone masonry vault that consists of 8 double intercrossed arches with each other and braced by severies. During the seventeenth century there was a lantern in the central cap and it is unknown why it was removed. Its construction could justify the original constructive solution with intercrossed arches that freed the center to create a more enlightened and comfortable presbytery. By similarity with other Quijano’s works, it is considered a small lantern drilling the central spherical cap. It is proposed to carry out a comparative study of it with different architectural solutions from the same period and based on several common parameters such as: a vault of square plant with spherical surround, intercrossed arches, a possible lantern, the dimension of the permitted space, similar states of loads and compact limestone masonry. The three solutions are mainly differentiated by their size and the type of lantern and its comparison lets us know which one is the most resistant and stable. The other two building works maintain some connection with the Quijano's professional scope. It has selected the particular case of the Communion chapel of the Basilica in Elche (a large prismatic lantern with a large cylindrical drum that starts from the own arches and an upper hemispherical dome), for its conservation, its proximity to Orihuela and its implementation during the century XVIII. Finally, a significant Dome Spanish Renaissance complete the selection: a cross vault of the Benavides Chapel of the Saint Francisco Convent in Baeza - Jaén-, designed by Andres of Vandelvira in the sixteenth century (a large hemispherical dome that starts from the own arcs). To simplify the calculation and standardize the work that have to be contrasted, all of them were considered with some similar characteristics: 30 cm constant thickness, the intercrossed arches were specifically analyzed and had identical loads, Young's modulus and Poisson's ratio. Regarding the calculation solutions, in general terms, the compressive stresses predominate, influencing on it the joint collaboration of the filling material on the vault, the vault itself, the thick side walls, the buttresses and the top cover weight . In addition, the three solutions are suitable, being the Orihuela one the safest and the Baeza one the riskiest for its large dimensions. Thus, the idea of intercrossed arches with suitable thickness would allow carry out the heaviest lantern and this would confirm it as a Renaissance architectural typology built in stone.
Resumo:
The stone masonry walls are present in many buildings and historical monuments, with undeniable asset value, but also in old buildings housing both in Portugal and in Europe. Most of these buildings in masonry are in certain cases in a high state of degradation needing urgent intervention. This requires the identification of deficiencies and the application of appropriate intervention techniques. One of the possible techniques for structural consolidation works of stone masonry walls is the injection of fluid mortars currently called grouts. The choice of grouts is very important with regard in particular to their chemical and physical properties. In this study, carried out under the Master of Chemical Engineering, two types of lime-based grouts were used, in order to evaluate and compare their chemical resistance due to the crystallization of soluble salts. One of the grouts is a pre-dosed blend commercially available, Mape-Antique I from company Mapei (CA), and the second grout is a mixture prepared in the laboratory (LB), comprising metakaolin, cement, hydrated lime, water and superplasticizer. With the purpose of evaluating the action of sulphates on these grouts, a series of samples underwent several wetting-drying cycles using two different temperatures, 20 °C and 50 °C. During the experiment it was determined the change of weight and compressive strength in the analyzed grouts, as well as the sulphate ion concentration and pH of the solution in which the samples were dipped. The commercial grout (CA) apparently has a greater chemical resistance to sulphates. However grout LB showed to have positive results in some parameters.
Resumo:
Aggregate masonry buildings have been generated over the years, allowing the interaction of different aggregated structural units under seismic action. The first part of this work is focused on the seismic vulnerability and fragility assessment of clay brick masonry buildings, sited in Bologna (Italy), with reference, at first, to single isolated structural units, by means of the Response Surface statistical method, taking into account some variabilities and uncertainties involved in the problem. The seismic action was defined by means of a group of selected registered accelerograms, in order to analyse the effect of the variability of the earthquakes. Identical and different structural units chosen by the Response Surface generated simulations are then aggregated in row, in order to compare the collapse PGA referred to the isolated structural unit and the one referred to the aggregate structure. The second part is focused on the seismic vulnerability and fragility assessment of stone masonry structures, sited in Seixal (Portugal), applying a methodology similar to that used for the buildings sited in Bologna. Since the availability of several information, the analyses involved the assessment of the most prevalent structural typologies in the area, considering the variability of a set of structural and geometrical parameters. The results highlighted the importance of the statistic procedures as method able to consider the variabilities and the uncertainties involved in the problem of the fragility of unreinforced masonry structures, in absence of accurate investigations on the structural typologies, as in the Seixal case study. Furthermore, it was showed that the structural units along the unreinforced clay brick or stone masonry aggregates cannot be analysed as isolated, as they are affected by the effect of the aggregation with adjacent structural units, according to the different directions of the seismic action considered and to their different position along the row aggregate.
Resumo:
Vaults are an architectural element which during construction history have been built with a great variety of different materials, shapes, and sizes. The shape of these structural elements was often dependent by the necessity to cover complex spaces, by the needed loading capacity, or by architectural aesthetics. Within this complex scenario masonry patterns generates also different effects on loading capacity, load percolation and stiffness of the structure. These effects were been extensively investigated, both with empirical observations and with modern numerical methods. While most of them focus on analyzing the load bearing capacity or the texture effect on vaulted structures, the aim of this analysis is to investigate on the effects of the variation of a single structural characteristic on the load percolation in the vault. Moreover, an additional purpose of the work is related to the coding of a parametrical model aiming at generating different masonry vaulted structures. Nevertheless, proposed script can generate different typology of vaulted structure basing on some structural characteristics, such as the span and the length to cover and the dimensions of the blocks.
Resumo:
This PhD dissertation presents a profound study of the vulnerability of buildings and non-structural elements stemming from the investigation of the Mw 5.2 Lorca 2011 earthquake; which constitutes one of the most significant earthquakes in Spain. It left nine fatalities due to falling debris from reinforced concrete buildings, 394 injured and material damage valued at 800 million euros. Within this framework, the most relevant initiatives concerning the vulnerability of buildings and the exposure of Lorca are studied. This work revealed two lines of research: the elaboration of a rational method to determine the adequacy of a specific fragility curve for the particular seismic risk study of a region; and the relevance of researching the seismic performance of non-structural elements. As a consequence, firstly, a method to assess and select fragility curves for seismic risk studies from the catalogue of those available in the literature is elaborated and calibrated by means of a case study. The said methodology is based on a multidimensional index and provides a ranking that classifies the curves in terms of adequacy. Its results for the case of Lorca led to the elaboration of new fragility curves for unreinforced masonry buildings. Moreover, a simplified method to account for the unpredictable directionality of the seism in the creation of fragility curves is contributed. Secondly, the characterisation of the seismic capacity and demand of the non-structural elements that caused most of the human losses is studied. Concerning the capacity, an analytical approach derived from theoretical considerations to characterise the complete out-of-plane seismic response curve of unreinforced masonry cantilever walls is provided; as well as a simplified and more practical trilinear version of it. Concerning the demand, several methods for characterising the Floor Response Spectra of reinforced concrete buildings are tested through case studies.
Resumo:
Historic vaulted masonry structures often need strengthening interventions that can effectively improve their structural performance, especially during seismic events, and at the same time respect the existing setting and the modern conservation requirements. In this context, the use of innovative materials such as fiber-reinforced composite materials has been shown as an effective solution that can satisfy both aspects. This work aims to provide insight into the computational modeling of a full-scale masonry vault strengthened by fiber-reinforced composite materials and analyze the influence of the arrangement of the reinforcement on the efficiency of the intervention. At first, a parametric model of a cross vault focusing on a realistic representation of its micro-geometry is proposed. Then numerical modeling, simulating the pushover analyses, of several barrel vaults reinforced with different reinforcement configurations is performed. Finally, the results are collected and discussed in terms of force-displacement curves obtained for each proposed configuration.
Resumo:
Hypertensive patients exhibit higher cardiovascular risk and reduced lung function compared with the general population. Whether this association stems from the coexistence of two highly prevalent diseases or from direct or indirect links of pathophysiological mechanisms is presently unclear. This study investigated the association between lung function and carotid features in non-smoking hypertensive subjects with supposed normal lung function. Hypertensive patients (n = 67) were cross-sectionally evaluated by clinical, hemodynamic, laboratory, and carotid ultrasound analysis. Forced vital capacity, forced expired volume in 1 second and in 6 seconds, and lung age were estimated by spirometry. Subjects with ventilatory abnormalities according to current guidelines were excluded. Regression analysis adjusted for age and prior smoking history showed that lung age and the percentage of predicted spirometric parameters associated with common carotid intima-media thickness, diameter, and stiffness. Further analyses, adjusted for additional potential confounders, revealed that lung age was the spirometric parameter exhibiting the most significant regression coefficients with carotid features. Conversely, plasma C-reactive protein and matrix-metalloproteinases-2/9 levels did not influence this relationship. The present findings point toward lung age as a potential marker of vascular remodeling and indicate that lung and vascular remodeling might share common pathophysiological mechanisms in hypertensive subjects.
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.
Resumo:
A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.