976 resultados para Streptozotocin Induced Diabetic Rats
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aims: The effect of exercise training (ET) on vascular responsiveness in diabetes mellitus has been largely well studied. However, limited studies have investigated the effects of ET on functional responses of the corpus cavernosum (CC) in diabetic animals. Therefore, the aim of this study was to investigate whether prior ET prevents the impairment of erectile function in streptozotocin-induced diabetic rats. Main methods: Rats were exercised for four weeks prior to the induction of diabetes, and then again for another 4 weeks thereafter. Concentration-response curves to acetylcholine, sodium nitroprusside, Y-27632, BAY 412272 and phenylephrine (PE) were obtained in CC. The excitatory and inhibitory effects of electrical-field stimulation were also evaluated. Key findings: Plasma SOD levels were markedly decreased in the sedentary diabetic group (D-SD) as compared to control sedentary animals (C-SD), approximately 53% (P < 0.05) and this reduction was restored in trained diabetic animals. Physical training restored the impairment of endothelium-dependent and -independent relaxation responses seen in the D-SD group. The potency values for Y-27632 in the CC were significantly reduced in the D-SD group, which was reversed by physical training. The impairment of electrical-field stimulation (EFS)-induced relaxation seen in the D-SD group was restored by physical training. On the other hand, both EFS-induced contractions and concentration-response curves to PE in cavernosal strips were not modified by either diabetes or physical training. Significance: Practice of regular physical exercise may be an important approach in preventing erectile dysfunction associated with diabetes mellitus by re-establishment of the balance between NO production and its inactivation. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Alterations in liver functions are common among diabetic patients, and many symptoms in the liver have been reported, including changes in glycogen stores and in the amount of collagen fibers. The practice of physical training and its morphological effects in this organ, however, are scarcely studied. In order to observe the morphological effects of alloxan-induced diabetes and the alterations arising from the practice of long-term chronic physical training in the liver, samples were collected and processed, and then analyzed by means of the histochemical techniques Periodic Acid-Schiff and Picrosirius-Hematoxylin, and ultrastructural cytochemical test of Afzelius. Through evaluation of the tissue, it was observed a drastic reduction in hepatic glycogen stores of sedentary diabetics, recovered in trained diabetic rats. Furthermore, it was detected a decrease in the content of perisinusoidal collagen fibers in the diabetic liver, also recovered due to the development of a training protocol. On ultrastructural level, cytochemical analysis confirmed the loss of glycogen and the recovery obtained by training. In conclusion, the practice of a long-term chronic physical training protocol may be considered an important assistant in the treatment of diabetes, mitigating the occurrence of possible damages to liver tissue. © 2011 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study we evaluated the onset and resolution of inflammation in control and streptozotocin-induced diabetic rats subjected to a single session of intense exercise. The following measurements were carried out prior to, immediately after, and 2 and 24 hours after exercise: plasma levels of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6, CINC-2 alpha/beta, MIP-3 alpha, and IL-6), immunoglobulins (IgA and IgM), acute phase proteins (CRP and C3), and creatine kinase (CK) activity. We also examined the occurrence of macrophage death by measurements of macrophages necrosis (loss of membrane integrity) and DNA fragmentation. An increase was observed in the concentration of IL-1 beta (3.3-fold) and TNF-alpha (2.0-fold) and in the proportion of necrotic macrophages (4.5-fold) in diabetic rats 24 hours after exercise, while the control group showed basal measurements. Twenty-four hours after the exercise, serum CK activity was elevated in diabetic rats but not in control animals. We concluded that lesion and inflammations resulting from intense exercise were greater and lasted longer in diabetic animals than in nondiabetic control rats.
Resumo:
Introduction: We evaluated the role of cardiovascular autonomic changes in hemodynamics at rest and in response to exercise in streptozotocin-induced diabetic rats. Methods: Male Wistar rats were divided into nondiabetic (ND, n = 8) and diabetic (D, n = 8) groups. Arterial pressure signals were recorded in the basal state and after atropine or propranolol injections at rest, during exercise and during recovery. Results: At rest, vagal tonus was reduced in D (37 +/- 3 bpm) in comparison with the ND group (61 +/- 9 bpm). Heart rate during exercise was lower in D in relation to ND rats associated with reduced vagal withdrawal in the D group. The D rats had an increase in vagal tonus in the recovery period (49 +/- 6 bpm). Conclusions: Exercise-induced hemodynamic adjustment impairment in diabetic rats was associated with reduced cardiac vagal control. The vagal dysfunction was attenuated after aerobic exercise, reinforcing the positive role of this approach in the management of cardiovascular risk in diabetics. Muscle Nerve 46: 96101, 2012
Resumo:
Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in varying proportions. Ethanol/dichloromethane blend was used as solvent in a ratio of 1:1. The floating microspheres were evaluated for flow properties, particle size, incorporation efficiency, as well as in-vitro floatability and drug release. The anti-diabetic activity of the floating microspheres of batch FM4 was performed on alloxaninduced diabetic rats. Result: The floating microspheres had particle size, buoyancy, drug entrapment efficiency and yield in the ranges of 255.32 - 365.65 μm, 75.58 - 89.59, 72.6 - 83.5, and 60.46 - 80.02 %, respectively. Maximum drug release after 24 h was 82.62 % for formulation FM4 and 73.879, 58.613 and 46.106 % for formulations FM1, FM2, and FM3 respectively. In-vivo data obtained over a 120-h period indicate that curcumin floating microspheres from batch FM4 showed the better glycemic control than control and a commercial brand of the drug. Conclusion: The developed floating curcumin delivery system seems economical and effective in diabetes management in rats, and enhances the bioavailability of the drug.
Resumo:
Impaired baroreflex sensitivity in diabetes is well described and has been attributed to autonomic diabetic neuropathy. In the present study conducted on acute (10-20 days) streptozotocin (STZ)-induced diabetic rats we examined: 1) cardiac baroreflex sensitivity, assessed by the slope of the linear regression between phenylephrine- or sodium nitroprusside-induced changes in arterial pressure and reflex changes in heart rate (HR) in conscious rats; 2) aortic baroreceptor function by means of the relationship between systolic arterial pressure and aortic depressor nerve (ADN) activity, in anesthetized rats, and 3) bradycardia produced by electrical stimulation of the vagus nerve or by the iv injection of methacholine in anesthetized animals. Reflex bradycardia (-1.4 ± 0.1 vs -1.7 ± 0.1 bpm/mmHg) and tachycardia (-2.1 ± 0.3 vs -3.0 ± 0.2 bpm/mmHg) were reduced in the diabetic group. The gain of the ADN activity relationship was similar in control (1.7 ± 0.1% max/mmHg) and diabetic (1.5 ± 0.1% max/mmHg) animals. The HR response to vagal nerve stimulation with 16, 32 and 64 Hz was 13, 16 and 14% higher, respectively, than the response of STZ-treated rats. The HR response to increasing doses of methacholine was also higher in the diabetic group compared to control animals. Our results confirm the baroreflex dysfunction detected in previous studies on short-term diabetic rats. Moreover, the normal baroreceptor function and the altered HR responses to vagal stimulation or methacholine injection suggest that the efferent limb of the baroreflex is mainly responsible for baroreflex dysfunction in this model of diabetes.
Resumo:
I) To study the changes in the content of brain rrrorroamirres in streptozotocirr-irrduced tliabetes as a lirnction of age and to lirrd the role oliadrenal lrornroncs in diabetic state. 2) To assess the adrenergic receptor function in the brain stem ofstreptozotocin-induced diabetic rats ofdillerent ages. 3) To study the changes in the basal levels of second messenger cAMP in the brain stenr ofstreptozotocin-induced diabetic rats as a function of age. 4) To study the changes occurring in the content ofmorroamines and their metabolites in whole pancreas and isolated pancreatic islets of streptozotocin-diabetic rats as a function ofage and the effect of adrenal hormones. 5) To study the adrenergic receptors and basal levels of cAMP in isolated pancreatic islets in young and old streptozotoein-diabetic rats. 6) The in virro study of CAMP content in pancreatic islets of young and old rats and its ellect on glucose induced insulin secretion. 7) 'lhe in vitro study on the involvement of dopamine and corticosteroids in glucose induced insulin secretion in pancreatic islets as a function of age.