981 resultados para Strength mean values
Resumo:
Esta pesquisa estudou a influência de diferentes velocidades de corte e marcas de discos diamantados nos valores de resistência adesiva, durante a preparação dos espécimes a serem submetidos à microtração, e na integridade das amostras por meio do microscópio eletrônico de varredura (MEV). Vinte blocos da cerâmica à base de dissilicato de lítio (IPS e.max Press) foram unidos com cimento resinoso (Rely X ARC) a blocos de compósito (Z100), construídos incrementalmente. Foram seguidas as recomendações dos fabricantes no tratamento da superfície da cerâmica e aplicação do cimento resinoso. Após 24 horas em água destilada a 37C, os espécimes foram divididos em dois grupos de discos: marcas Buehler e Extec e subdivididos nas velocidades de 200rpm e 400rpm (B2; E2; B4 e E4, respectivamente). Cada espécime foi cortado em dois eixos perpendiculares para obtenção de palitos com área adesiva de 1,0mm. Para cada condição experimental, os palitos foram separados, aleatoriamente, 15 palitos para análise ao MEV e 30 palitos para serem submetidos à força de tração. As médias de resistência adesiva em MPa foram E4=20,312 ; B4= 24,2 11,3 ; B2= 25,2 9,0 e E2= 28,6 10,4. Na análise estatística, observou-se que os valores de resistência adesiva na velocidade de 200rpm foram significativamente maiores comparados a velocidade de 400rpm, independente do disco empregado. Ao MEV, observou-se melhor integridade dos palitos na velocidade de 200rpm com presença de trincas menos extensas nas bordas externas. Constatou-se também que o disco Extec na velocidade de 400rpm apresentou movimentos excêntricos ao corte e obteve-se maior número de perdas prematuras, uma diminuição significante na média da área total de união (p<0,05), além de diferença significativa nos valores de resistência comparada a velocidade de 200rpm. Concluiu-se que a utilização de diferentes velocidades e sua interação com o disco empregado interfere na integridade dos espécimes e nos valores de resistência adesiva, sendo mais acentuada ao se utilizar o disco da marca Extec.
Resumo:
Chaplin, W. J.; Dumbill, A. M.; Elsworth, Y.; Isaak, G. R.; McLeod, C. P.; Miller, B. A.; New, R.; Pint?r, B., Studies of the solar mean magnetic field with the Birmingham Solar-Oscillations Network (BiSON), Monthly Notice of the Royal Astronomical Society, Volume 343, Issue 3, pp. 813-818. RAE2008
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2015
Resumo:
Recent gravity missions have produced a dramatic improvement in our ability to measure the ocean’s mean dynamic topography (MDT) from space. To fully exploit this oceanic observation, however, we must quantify its error. To establish a baseline, we first assess the error budget for an MDT calculated using a 3rd generation GOCE geoid and the CLS01 mean sea surface (MSS). With these products, we can resolve MDT spatial scales down to 250 km with an accuracy of 1.7 cm, with the MSS and geoid making similar contributions to the total error. For spatial scales within the range 133–250 km the error is 3.0 cm, with the geoid making the greatest contribution. For the smallest resolvable spatial scales (80–133 km) the total error is 16.4 cm, with geoid error accounting for almost all of this. Relative to this baseline, the most recent versions of the geoid and MSS fields reduce the long and short-wavelength errors by 0.9 and 3.2 cm, respectively, but they have little impact in the medium-wavelength band. The newer MSS is responsible for most of the long-wavelength improvement, while for the short-wavelength component it is the geoid. We find that while the formal geoid errors have reasonable global mean values they fail capture the regional variations in error magnitude, which depend on the steepness of the sea floor topography.
Resumo:
This study investigates how the summer thunderstorms developed over the city of Sao Paulo and if the pollution might affect its development or characteristics during the austral summer (December-January-February-March, DJFM months). A total of 605 days from December 1999 to March 2004 was separated as 241 thunderstorms days (TDs) and 364 non-thunderstorm days (NTDs). The analyses are performed by using hourly measurements of air temperature (T), web-bulb temperature (Tw), surface atmospheric pressure (P), wind velocity and direction, rainfall and thunder and lightning observations collected at the Meteorological Station of the University of Sao Paulo in conjunction with aerosol measurements obtained by AERONET (Aerosol Robotic Network), and the NCEP-DOE (National Centers for Environmental Prediction Department of Energy) reanalysis and radiosondes. The wind diurnal cycle shows that for TDs the morning flow is from the northwest rotating to the southeast after 16: 00 local time (LT) and it remains from the east until the night. For the NTDs, the wind is well characterized by the sea-breeze circulation that in the morning has the wind blowing from the northeast and in the afternoon from the southeast. The TDs show that the air temperature diurnal cycle presents higher amplitude and the maximum temperature of the day is 3.2 degrees C higher than in NTDs. Another important factor found is the difference between moisture that is higher during TDs. In terms of precipitation, the TDs represent 40% of total of days analyzed and those days are responsible for more than 60% of the total rain accumulation during the summer, for instance 50% of the TDs had more than 15.5mm day(-1) while the NTDs had 4 mm day(-1). Moreover, the rainfall distribution shows that TDs have higher rainfall rate intensities and an afternoon precipitation maximum; while in the NTDs there isn`t a defined precipitation diurnal cycle. The wind and temperature fields from NCEP reanalysis concur with the local weather station and radiosonde observations. The NCEP composites show that TDs are controlled by synoptic circulation characterized by a pre-frontal situation, with a baroclinic zone situated at southern part of Sao Paulo. In terms of pollution, this study employed the AERONET data to obtain the main aerosol characteristics in the atmospheric column for both TDs and NTDs. The particle size distribution and particle volume size distribution have similar concentrations for both TDs and NTDs and present a similar fine and coarse mode mean radius. In respect to the atmospheric loading, the aerosol optical depth (AOD) at different frequencies presented closed mean values for both TDs and NTDs that were statistically significant at 95% level. The spectral dependency of those values in conjunction with the Angstrom parameter reveal the higher concentration of the fine mode particles that are more likely to be hygroscopic and from urban areas. In summary, no significant aerosol effect could be found on the development of summer thunderstorms, suggesting the strong synoptic control by the baroclinic forcing for deep convective development. (C) 2010 Published by Elsevier B. V.
Resumo:
The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60A degrees C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.
Resumo:
The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter x 1 mm thick) from each of 2 cements, PanaviaA (R) F2.0 (Kuraray) and RelyX (TM) Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm(2) for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10A degrees C/min from 25 to 700A degrees C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements (p < 0.05). The Tukey`s test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements (p > 0.05). The Relx-Y (TM) Unicem mean values were significantly higher than PanaviaA (R) F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements.
Resumo:
Dental composite resins possess good esthetic properties, and are currently among the most popular dental restorative materials. Both organic and inorganic phases might influence the material behavior, the filler particle features and rate are the most important factors related to improvement of the mechanical properties of resin composites. Thus, the objective of this study was to evaluate the effect of three different composite resins on the polymerization process by Vickers hardness test. The samples were prepared using three different composite resins, as follow: group I-P-60 (3M/ESPE); group II-Herculite XRV (Kerr), and group III-Durafill (Heraeus-Kulzer). The samples were made in a polytetrafluoroethylene mould, with a rectangular cavity measuring 7 mm in length, 4 mm in width, and 3 mm in thickness. The samples were photo-activated by one light-curing unit based on blue LEDs (Ultrablue III-DMC/Brazil) for 20 and 40 s of irradiation times. The Vickers hardness test was performed 24 h after the photo-activation until the standardized depth of 3 mm. The Vickers hardness mean values varied from 158.9 (+/- 0.81) to 81.4 (+/- 1.94) for P-60, from 138.7 (+/- 0.37) to 61.7 (+/- 0.24) for Herculite XRV, and from 107. 5 (+/- 0.81) to 44.5 (+/- 1.36) for Durafill composite resins photo-activated during 20 s for the 1st and 2nd mm, respectively. During 40 s of photo-activation, the Vickers hardness mean values were: from 181.0 (+/- 0.70) to 15.6 (+/- 0.29) for P-60, and from 161.8 (+/- 0.41) to 11.2 (+/- 0.17) for Herculite XRV composite resins, for the 1st and 3th mm, respectively. For Durafill composite resin the mean values varied from 120.1 (+/- 0.66) to 61.7 (+/- 0.20), for the 1st and 2nd mm, respectively. The variation coefficient (CV) was in the most of the groups lower than 1%, then the descriptive statistic analysis was used. The Vickers hardness mean values for Durafill were lower than P-60 and Herculite XRV composite resins for 20 and 40 s of irradiation time. The polymerization process was greatly affected by the composition of the composite resins.
Resumo:
Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy
Resumo:
Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole
Resumo:
This paper mainly aimed to evaluate the physical and mechanical properties of LVL panels made from Eucalyptus grandis, from reforestation at the region of Senges, in Parana state, Brazil. LVL panels were manufactured using 23 veneers (2,4mm thick each one) in commercial dimension of 2.500 mm long and 1,200 mm wide. The properties of static bending were analyzed (strength and rigidity) in beams of the LVL, in the flatwise and edgewise positions. The properties of compression parallel to grain and shear parallel in the plans L-X and L-Y and density in this LVL panels were also analyzed according to ASTM-D 5456/4761 and ASTM-D 198 codes. The mean values to flatwise bending MOE and MOR were 13114 MPa and 88.76 MPa, respectively, and for edgewise bending MOE and MOR were 15871 MPa and 88.63 MPa, respectively. The density (12%) of the LVL panels and of the veneers were 690 kg/m(3) and 649 kg/m(3). The mean values to parallel compression MOE and MOR were 16856 MPa and 58.05 MPa, respectively. The mean values of the maximum resistance to shear parallel in the plans L-X and L-Y were 5.96 MPa and 591 MPa, respectively. All these values reached partially or they passed the medium limits of reference (normative codes, researches and commercial catalogs) established for LVL panels and original solid wood, attesting overall the quality of those panels produced with this wood.
Resumo:
Introduction: The reference values and prediction equations for maximal respiratory pressures (MRP) differ significantly between the available studies. This large discrepancy can be attributed to the different methodologies proposed. Although the importance of MRP is widely recognized, there are no Brazilian studies that provide predictive equations and reference values for PRM adolescents. Objectives: The purpose of this study was to provide normal values and propose predictive equations for maximal static respiratory pressures of Brazilian adolescents. Methods: An observational cross-sectional study, which evaluated 182 adolescents of both sexes aged between 12 and 18 years, enrolled in schools of the state and private in the city of Natal / RN. The selection of schools and participants of the study was randomly through a lottery system. The spirometric evaluation was performed through the digital spirometer One Flow FVC prior to the assessment of respiratory muscle strength. The MICs were measured with MVD digital manometer 300. Statistical analysis was performed using the SPSS 17.0 software STATISTICS, assigning the significance level of 5%. The normality of data distribution was verified using the Kolmogorov-Smirnov (KS). The descriptive analysis was expressed as mean and standard deviation. We used one-way ANOVA test to verify the difference of the averages of MRPs between age and gender and comparing the averages of MRPs between levels of physical activity. The test t'Student unpaired compared the averages of MRPs being ages and sexes. The comparison of mean values obtained in this study PRM with the values predicted using the equations mentioned above was relizada by testing paired t'Student. To verify the correlation between the PRM and the independent variables (age, weight, height) was used Pearson correlation test. Levene's test evaluated the homogeneity of variance. To obtain predictive equations analysis was used stepwise multiple linear regression. Results: There was no significant difference in mean age between the PRM. The male adolescents, regardless of age, showed superiority in MRP values when compared to the opposite sex. Weight, height and sex correlated with the PRM. Regression analysis suggested in this study, pointed out that the weight and sex had an influence in MIP and MEP only in relation to sex influenced. The mean for each PRM adolescents classified as very active were superior to those observed in adolescents classified as irregularly active. Conclusion: This study provides reference values and two models of predictive equations for maximal inspiratory and expiratory pressures, and to establish the lower limits of normality that will serve as an indispensable condition for careful evaluation of respiratory muscle strength in Brazilian adolescents
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An experiment was carried out to establish mean bone quality values of the tibiae and femora of ostriches and to evaluate these bones. The right leg bones of 10 males and 10 female African Black ostriches were evaluated. Birds were radiographed immediately after slaughter (during bleeding), with the aid of a portable X-ray apparatus. The obtained radiographs were scanned and bone mineral density means were obtained using software. Bone strength, Seedor index, and dry matter percentage were evaluated and correlated to weight gain during the finishing period (3-13 months of age). Mean values of the evaluated bone quality traits, not previously found in literature, were established. There were no significant differences between males and females in performance or bone quality parameters. It was concluded that male and female ostriches present similar performance and bone quality at slaughter age.