987 resultados para Stochastic process


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A partir de perfis populacionais experimentais de linhagens do díptero forídeo Megaselia scalaris, foi determinado o número mínimo de perfis amostrais que devem ser repetidos, via processo de simulação bootstrap, para se ter uma estimativa confiável do perfil médio populacional e apresentar estimativas do erro-padrão como medida da precisão das simulações realizadas. Os dados originais são provenientes de populações experimentais fundadas com as linhagens SR e R4, com três réplicas cada, e que foram mantidas por 33 semanas pela técnica da transferência seriada em câmara de temperatura constante (25 ± 1,0ºC). A variável usada foi tamanho populacional e o modelo adotado para cada perfíl foi o de um processo estocástico estacionário. Por meio das simulações, os perfis de três populações experimentais foram amplificados, determinando-se, dessa forma, o tamanho mínimo de amostra. Fixado o tamanho de amostra, simulações bootstrap foram realizadas para construção de intervalos de confiança e comparação dos perfis médios populacionais das duas linhagens. Os resultados mostram que com o tamanho de amostra igual a 50 inicia-se o processo de estabilização dos valores médios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho trata da aplicação do filtro Kalman-Bucy (FKB), organizado como uma deconvolução (FKBD), para extração da função refletividade a partir de dados sísmicos. Isto significa que o processo é descrito como estocástico não-estacionário, e corresponde a uma generalização da teoria de Wiener-Kolmogorov. A descrição matemática do FKB conserva a relação com a do filtro Wiener-Hopf (FWH) que trata da contra-parte com um processo estocástico estacionário. A estratégia de ataque ao problema é estruturada em partes: (a) Critério de otimização; (b) Conhecimento a priori; (c) Algoritmo; e (d) Qualidade. O conhecimento a priori inclui o modelo convolucional, e estabelece estatísticas para as suas componentes do modelo (pulso-fonte efetivo, função refletividade, ruídos geológico e local). Para demostrar a versatilidade, a aplicabilidade e limitações do método, elaboramos experimentos sistemáticos de deconvolução sob várias situações de nível de ruídos aditivos e de pulso-fonte efetivo. Demonstramos, em primeiro lugar, a necessidade de filtros equalizadores e, em segundo lugar, que o fator de coerência espectral é uma boa medida numérica da qualidade do processo. Justificamos também o presente estudo para a aplicação em dados reais, como exemplificado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O filtro de Kalman é aplicado para filtragem inversa ou problema de deconvolução. Nesta dissertação aplicamos o método de Kalman, considerado como uma outra visão de processamento no domínio do tempo, para separar sinal-ruído em perfil sônico admitido como uma realização de um processo estocástico não estacionário. Em um trabalho futuro estudaremos o problema da deconvolução. A dedução do filtro de Kalman destaca a relação entre o filtro de Kalman e o de Wiener. Estas deduções são baseadas na representação do sistema por variáveis de estado e modelos de processos aleatórios, com a entrada do sistema linear acrescentado com ruído branco. Os resultados ilustrados indicam a aplicabilidade dessa técnica para uma variedade de problemas de processamento de dados geofísicos, por exemplo, ideal para well log. O filtro de Kalman oferece aos geofísicos de exploração informações adicionais para o processamento, problemas de modelamento e a sua solução.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação consta de estudos sobre deconvolução sísmica, onde buscamos otimizar desempenhos na operação de suavização, na resolução da estimativa da distribuição dos coeficientes de reflexão e na recuperação do pulso-fonte. Os filtros estudados são monocanais, e as formulações consideram o sismograma como o resultado de um processo estocástico estacionário, e onde demonstramos os efeitos de janelas e de descoloração. O principio aplicado é o da minimização da variância dos desvios entre o valor obtido e o desejado, resultando no sistema de equações normais Wiener-Hopf cuja solução é o vetor dos coeficientes do filtro para ser aplicado numa convolução. O filtro de deconvolução ao impulso é desenhado considerando a distribuição dos coeficientes de reflexão como uma série branca. O operador comprime bem os eventos sísmicos a impulsos, e o seu inverso é uma boa aproximação do pulso-fonte. O janelamento e a descoloração melhoram o resultado deste filtro. O filtro de deconvolução aos impulsos é desenhado utilizando a distribuição dos coeficientes de reflexão. As propriedades estatísticas da distribuição dos coeficientes de reflexão tem efeito no operador e em seu desempenho. Janela na autocorrelação degrada a saída, e a melhora é obtida quando ela é aplicada no operador deconvolucional. A transformada de Hilbert não segue o princípio dos mínimos-quadrados, e produz bons resultados na recuperação do pulso-fonte sob a premissa de fase-mínima. O inverso do pulso-fonte recuperado comprime bem os eventos sísmicos a impulsos. Quando o traço contém ruído aditivo, os resultados obtidos com auxilio da transformada de Hilbert são melhores do que os obtidos com o filtro de deconvolução ao impulso. O filtro de suavização suprime ruído presente no traço sísmico em função da magnitude do parâmetro de descoloração utilizado. A utilização dos traços suavizados melhora o desempenho da deconvolução ao impulso. A descoloração dupla gera melhores resultados do que a descoloração simples. O filtro casado é obtido através da maximização de uma função sinal/ruído. Os resultados obtidos na estimativa da distribuição dos coeficientes de reflexão com o filtro casado possuem melhor resolução do que o filtro de suavização.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classical sampling methods can be used to estimate the mean of a finite or infinite population. Block kriging also estimates the mean, but of an infinite population in a continuous spatial domain. In this paper, I consider a finite population version of block kriging (FPBK) for plot-based sampling. The data are assumed to come from a spatial stochastic process. Minimizing mean-squared-prediction errors yields best linear unbiased predictions that are a finite population version of block kriging. FPBK has versions comparable to simple random sampling and stratified sampling, and includes the general linear model. This method has been tested for several years for moose surveys in Alaska, and an example is given where results are compared to stratified random sampling. In general, assuming a spatial model gives three main advantages over classical sampling: (1) FPBK is usually more precise than simple or stratified random sampling, (2) FPBK allows small area estimation, and (3) FPBK allows nonrandom sampling designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Up to now the raise-and-peel model was the single known example of a one-dimensional stochastic process where one can observe conformal invariance. The model has one parameter. Depending on its value one has a gapped phase, a critical point where one has conformal invariance, and a gapless phase with changing values of the dynamical critical exponent z. In this model, adsorption is local but desorption is not. The raise-and-strip model presented here, in which desorption is also nonlocal, has the same phase diagram. The critical exponents are different as are some physical properties of the model. Our study suggests the possible existence of a whole class of stochastic models in which one can observe conformal invariance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using a symbolic method, known in the literature as the classical umbral calculus, a symbolic representation of Lévy processes is given and a new family of time-space harmonic polynomials with respect to such processes, which includes and generalizes the exponential complete Bell polynomials, is introduced. The usefulness of time-space harmonic polynomials with respect to Lévy processes is that it is a martingale the stochastic process obtained by replacing the indeterminate x of the polynomials with a Lévy process, whereas the Lévy process does not necessarily have this property. Therefore to find such polynomials could be particularly meaningful for applications. This new family includes Hermite polynomials, time-space harmonic with respect to Brownian motion, Poisson-Charlier polynomials with respect to Poisson processes, Laguerre and actuarial polynomials with respect to Gamma processes , Meixner polynomials of the first kind with respect to Pascal processes, Euler, Bernoulli, Krawtchuk, and pseudo-Narumi polynomials with respect to suitable random walks. The role played by cumulants is stressed and brought to the light, either in the symbolic representation of Lévy processes and their infinite divisibility property, either in the generalization, via umbral Kailath-Segall formula, of the well-known formulae giving elementary symmetric polynomials in terms of power sum symmetric polynomials. The expression of the family of time-space harmonic polynomials here introduced has some connections with the so-called moment representation of various families of multivariate polynomials. Such moment representation has been studied here for the first time in connection with the time-space harmonic property with respect to suitable symbolic multivariate Lévy processes. In particular, multivariate Hermite polynomials and their properties have been studied in connection with a symbolic version of the multivariate Brownian motion, while multivariate Bernoulli and Euler polynomials are represented as powers of multivariate polynomials which are time-space harmonic with respect to suitable multivariate Lévy processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A time series is a sequence of observations made over time. Examples in public health include daily ozone concentrations, weekly admissions to an emergency department or annual expenditures on health care in the United States. Time series models are used to describe the dependence of the response at each time on predictor variables including covariates and possibly previous values in the series. Time series methods are necessary to account for the correlation among repeated responses over time. This paper gives an overview of time series ideas and methods used in public health research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let Y be a stochastic process on [0,1] satisfying dY(t)=n 1/2 f(t)dt+dW(t) , where n≥1 is a given scale parameter (`sample size'), W is standard Brownian motion and f is an unknown function. Utilizing suitable multiscale tests, we construct confidence bands for f with guaranteed given coverage probability, assuming that f is isotonic or convex. These confidence bands are computationally feasible and shown to be asymptotically sharp optimal in an appropriate sense.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Standard macroeconomic models that assume an exogenous stochastic process for multifactor productivity offer the interpretation that recessions are the result of ''bad news'' (technological regress) and expansions are the result of ''good news'' (technological advancement). The view taken here is that both expansions and recessions are the result of ''good news'' in the sense that in both cases, aggregate production possibilities have increased. Recessions can be thought of as the transition from one technological frontier to the next.