971 resultados para Stochastic modelling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

SOUZA, Anderson A. S. ; SANTANA, André M. ; BRITTO, Ricardo S. ; GONÇALVES, Luiz Marcos G. ; MEDEIROS, Adelardo A. D. Representation of Odometry Errors on Occupancy Grids. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in cellular calcium concentration control a wide range of physiological processes, from the subsecond release of synaptic neurotransmitters, to the regulation of gene expression over months or years. Calcium can also trigger cell death through both apoptosis and necrosis, and so the regulation of cellular calcium concentration must be tightly controlled through the concerted action of pumps, channels and buffers that transport calcium into and out of the cell cytoplasm. A hallmark of cellular calcium signalling is its spatiotemporal complexity: stimulation of cells by a hormone or neurotransmitter leads to oscillations in cytoplasmic calcium concentration that can vary markedly in time course, amplitude, frequency, and spatial range. In this chapter we review some of the biological roles of calcium, the experimental characterisation of complex dynamic changes in calcium concentration, and attempts to explain this complexity using computational models. We consider the "toolkit" of cellular proteins which influence calcium concentration, describe mechanistic models of key elements of the toolkit, and fit these into the framework of whole cell models of calcium oscillations and waves. Finally, we will touch on recent efforts to use stochastic modelling to elucidate elementary calcium signal events, and how these may evolve into global signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Airport system is complex. Passenger dynamics within it appear to be complicate as well. Passenger behaviours outside standard processes are regarded more significant in terms of public hazard and service rate issues. In this paper, we devised an individual agent decision model to simulate stochastic passenger behaviour in airport departure terminal. Bayesian networks are implemented into the decision making model to infer the probabilities that passengers choose to use any in-airport facilities. We aim to understand dynamics of the discretionary activities of passengers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fault-tolerant multiprocessor (ftmp) is a bus-based multiprocessor architecture with real-time and fault- tolerance features and is used in critical aerospace applications. A preliminary performance evaluation is of crucial importance in the design of such systems. In this paper, we review stochastic Petri nets (spn) and developspn-based performance models forftmp. These performance models enable efficient computation of important performance measures such as processing power, bus contention, bus utilization, and waiting times.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation-based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1-D problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The uncertainty associated with a rainfall-runoff and non-point source loading (NPS) model can be attributed to both the parameterization and model structure. An interesting implication of the areal nature of NPS models is the direct relationship between model structure (i.e. sub-watershed size) and sample size for the parameterization of spatial data. The approach of this research is to find structural limitations in scale for the use of the conceptual NPS model, then examine the scales at which suitable stochastic depictions of key parameter sets can be generated. The overlapping regions are optimal (and possibly the only suitable regions) for conducting meaningful stochastic analysis with a given NPS model. Previous work has sought to find optimal scales for deterministic analysis (where, in fact, calibration can be adjusted to compensate for sub-optimal scale selection); however, analysis of stochastic suitability and uncertainty associated with both the conceptual model and the parameter set, as presented here, is novel; as is the strategy of delineating a watershed based on the uncertainty distribution. The results of this paper demonstrate a narrow range of acceptable model structure for stochastic analysis in the chosen NPS model. In the case examined, the uncertainties associated with parameterization and parameter sensitivity are shown to be outweighed in significance by those resulting from structural and conceptual decisions. © 2011 Copyright IAHS Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free-falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of I m x I m, the expected number of received free-failing raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re-detachment amount. The re-detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free-falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re-detachment amount were small parts of the total splash amount. Their proportions were 0.15% and 2.6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil-splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The space–time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham–Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as designing a targeted drug delivery system.