963 resultados para Stochastic expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete stochastic simulations, via techniques such as the Stochastic Simulation Algorithm (SSA) are a powerful tool for understanding the dynamics of chemical kinetics when there are low numbers of certain molecular species. However, an important constraint is the assumption of well-mixedness and homogeneity. In this paper, we show how to use Monte Carlo simulations to estimate an anomalous diffusion parameter that encapsulates the crowdedness of the spatial environment. We then use this parameter to replace the rate constants of bimolecular reactions by a time-dependent power law to produce an SSA valid in cases where anomalous diffusion occurs or the system is not well-mixed (ASSA). Simulations then show that ASSA can successfully predict the temporal dynamics of chemical kinetics in a spatially constrained environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.