993 resultados para Stimulates Growth
Resumo:
Ticks are obligatory blood-feeding arthropods and important vectors of both human and animal disease agents. Besides its metabolic role, insulin signaling pathway (ISP) is widely described as crucial for vertebrate and invertebrate embryogenesis, development and cell survival. In such cascade, Phosphatidylinositol 3-OH Kinase (PI3K) is hierarchically located upstream Protein Kinase B (PKB). To study the insulin-triggered pathway and its possible roles during embryogenesis we used a culture of embryonic Rhipicephalus microplus cells (BME26). Exogenous insulin elevated cell glycogen content in the absence of fetal calf serum (FCS) when compared to cells without treatment. Moreover, in the presence of PI3K inhibitors (Wortmannin or LY294002) these effects were blocked. We observed an increase in the relative expression level of PI3K`s regulatory subunit (p85), as determined by qRT-PCR. In the presence of PI3K inhibitors these effects on transcription were also reversed. Additionally, treatment with Wortmannin increased the expression level of the insulin-regulated downstream target glycogen synthase kinase 3 beta (GSK3 beta). The p85 subunit showed elevated transcription levels in ovaries from fully engorged females, but was differentially expressed during tick embryogenesis. These results strongly suggest the presence of an insulin responsive machinery in BME26 cells, and its correlation with carbohydrate/glycogen metabolism also during embryogenesis. (C) 2009 Published by Elsevier Inc.
Resumo:
A fundamental question in development economics is why some economies are rich and others poor. To illustrate the income per capita gap across economies consider that the average gross domestic product (GDP) per capita of the richest 10 percent of economies in the year 2010 was a factor of 40-fold that of the poorest 10 percent of economies. In other words, the average person in a rich economy produces in just over 9 days what the average person in a poor economy produces in an entire year. What are the factors that can explain this difference in standard of living across the world today? With this in view, this dissertation is a conjunction of three essays on the economic growth field which we seek a possible responses to this question. The first essay investigates the existence of resource misallocation in the Brazilian manufacturing sector and measures possible distortions in it. Using a similar method of measurement to the one developed by Hsieh and Klenow (2009) and firm-level data for 1996-2011 we find evidence of misallocation in the manufacturing sector during the observed period. Moreover, our results show that misallocation has been growing since 2005, and it presents a non-smooth dynamic. Significantly, we find that the Brazilian manufacturing sector operates at about 50% of its efficient product. With this, if capital and labor were optimally reallocated between firms and sectors we would obtain an aggregate output growth of approximately 110-180% depending on the mode in which the capital share is measured. We also find that the economic crisis did not have a substantial effect on the total productivity factor or on the sector's misallocation. However, small firms in particular seem to be strongly affected in a global crisis. Furthermore, the effects described would be attenuated if we consider linkages and complementarity effects among sectors. Despite Brazil's well-known high tax burden, there is not evidence that this is the main source of resource misallocation. Moreover, there is a distinct pattern of structural change between the manufacturing sectors in industrialized countries and those in developing countries. Therefore, the second essay demonstrate that this pattern differs because there are some factors that distort the relative prices and also affect the output productivity. For this, we present a multi-sector model of economic growth, where distortions affect the relative prices and the allocation of inputs. This phenomenon imply that change of the production structure or perpetuation of the harmful structures to the growth rate of aggregate output. We also demonstrate that in an environment with majority decision, this distortion can be enhanced and depends on the initial distribution of firms. Furthermore, distortions in relative prices would lead to increases in the degree of misallocation of resources, and that imply that there are distinct patterns of structural changes between economies. Finally, the calibrated results of the framework developed here converge with the structural change observed in the firm-level data of the Brazilian manufacturing sector. Thereafter, using a cross-industry cross-country approach, the third essay investigates the existence of an optimal level of competition to enhance economic growth. With that in mind, we try to show that this optimal level is different from industrialized and under development economies due to the technology frontier distance, the terms of trade, and each economy's idiosyncratic characteristics. Therefore, the difference in competition industry-country level is a channel to explain the output for worker gap between countries. The theoretical and empirical results imply the existence of an inverted-U relationship between competition and growth: starting for an initially low level of competition, higher competition stimulates innovation and output growth; starting from a high initial level of competition, higher competition has a negative effect on innovation and output growth. Given on average industries in industrialized economies present higher competition level. With that if we control for the terms of trade and the industry-country fixed effect, if the industries of the developing economy operated under the same competition levels as of the industrialized ones, there is a potential increase of output of 0.2-1.0% per year. This effect on the output growth rate depends on the competition measurement used.
Resumo:
Background: the poor predictability of periodontal regenerative treatment of Class III furcation defects stimulates the study of alternatives to improve its results, such as the use of polypeptide growth factors. The objective of this study was to evaluate, both histologically and histometrically, the effects of topical application of basic fibroblast growth factor (b-FGF) associated with guided tissue regeneration (GTR) in the treatment of Class III defects surgically induced in dogs.Methods: All second and fourth premolars of 5 mongrel dogs were used and randomly assigned to one of three treatment groups: group 1 (control), treated with scaling and root planing, tetracycline hydrochloride (125 mg/ml) conditioning, and GTR with a collagen membrane; group 2, same treatment as group 1 plus 0.5 mg of b-FGF; group 3, same treatment as group 1 plus 1.0 mg of b-FGF. After a 90-day healing period, routine histologic processing and staining with hematoxylin and eosin and Masson trichrome were performed.Results: the descriptive analysis indicated better regenerative results in both groups treated with b-FGF while the histometric data, analyzed by means of analysis of variance (ANOVA), showed greater filling of the defects in group 2 in comparison to the defects in groups 3 and 1, respectively, which was represented by a smaller area of plaque-occupied space (P = 0.004) as well as a greater amount of newly formed cementum (P = 0.002).Conclusions: These results indicate that b-FGF, especially in smaller doses, may enhance the regenerative results in Class III furcation lesions, leading to greater filling of these defects with both mineralized and non-mineralized tissues.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: The aim of this study was to investigate the effects of PRP on SAOS-2 cells in terms of cytokine expression, cell activity and oxidative stress. Design: Cell line SAOS-2 (1 x 10(5) cells/mL) were grown in culture medium alpha-MEM with 10% FBS for 24 h and stimulated (or not) with PRP at concentrations of 3, 10 and 20%, LPS (E. coli, 10 g/mL) and IL-1 beta (1 mg/mL) for 24 h. The supernatant was collected and analyzed for the expression of cytokines in a panel array, ALP using a commercial kit and NO2- with Griess reaction method. Also, the cells were analyzed using Western blot for RANKL and slot blotting for nitrotyrosine expression. Result: There were no significant differences amongst the groups in terms of NO2-, protein nitrotyrosine content and RANKL expression. However, all stimuli increased ALP activity and in case of PRP, it was in a dose-dependent manner (p < 0.001). Also, all stimuli induced an increase in cytokines and chemokines expression, but only PRP promoted an increase of component C5, sICAM-1 and RANTES expression. Whilst IL-1 receptor antagonist (IL-1ra) expression was down-regulated by PRP, both LPS and IL-1 beta caused up-regulation of this cytokine. Conclusions: PRP can stimulate osteoblast activity and cytokine/chemokine release, as well as indicate some of the mediators that can (and cannot) be involved in this activation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3 +/- 1.5 ng/ml was observed compared with 1.04 +/- 1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5 +/- 9.7 ng/ml and a higher growth hormone release of 163 +/- 46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.
Resumo:
Abstract Background Lung cancer often exhibits molecular changes, such as the overexpression of the ErbB1 gene. ErbB1 encodes epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, involved mainly in cell proliferation and survival. EGFR overexpression has been associated with more aggressive disease, poor prognosis, low survival rate and low response to therapy. ErbB1 amplification and mutation are associated with tumor development and are implicated in ineffective treatment. The aim of the present study was to investigate whether the ErbB1 copy number affects EGFR expression, cell proliferation or cell migration by comparing two different cell lines. Methods The copies of ErbB1 gene was evaluated by FISH. Immunofluorescence and Western blotting were performed to determine location and expression of proteins mentioned in the present study. Proliferation was studied by flow cytometry and cell migration by wound healing assay and time lapse. Results We investigated the activation and function of EGFR in the A549 and HK2 lung cancer cell lines, which contain 3 and 6 copies of ErbB1, respectively. The expression of EGFR was lower in the HK2 cell line. EGFR was activated after stimulation with EGF in both cell lines, but this activation did not promote differences in cellular proliferation when compared to control cells. Inhibiting EGFR with AG1478 did not modify cellular proliferation, confirming previous data. However, we observed morphological alterations, changes in microfilament organization and increased cell migration upon EGF stimulation. However, these effects did not seem to be consequence of an epithelial-mesenchymal transition. Conclusion EGFR expression did not appear to be associated to the ErbB1 gene copy number, and neither of these aspects appeared to affect cell proliferation. However, EGFR activation by EGF resulted in cell migration stimulation in both cell lines.
Resumo:
Abstract Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells.
Resumo:
It is increasingly recognised that chronically activated glia contribute to the pathology of various neurodegenerative diseases, including glaucoma. One means by which this can occur is through the release of neurotoxic, proinflammatory factors. In the current study, we therefore investigated the spatio-temporal patterns of expression of three such cytokines, IL-1β, TNFα and IL-6, in a validated rat model of experimental glaucoma. First, only weak evidence was found for increased expression of IL-1β and TNFα following induction of ocular hypertension. Second, and much more striking, was that robust evidence was uncovered showing IL-6 to be synthesised by injured retinal ganglion cells following elevation of intraocular pressure and transported in an orthograde fashion along the nerve, accumulating at sites of axonal disruption in the optic nerve head. Verification that IL-6 represents a novel marker of disrupted axonal transport in this model was obtained by performing double labelling immunofluorescence with recognised markers of fast axonal transport. The stimulus for IL-6 synthesis and axonal transport during experimental glaucoma arose from axonal injury rather than ocular hypertension, as the response was identical after optic nerve crush and bilateral occlusion of the carotid arteries, each of which is independent of elevated intraocular pressure. Moreover, the response of IL-6 was not a generalised feature of the gp130 family of cytokines, as it was not mimicked by another family member, ciliary neurotrophic factor. Finally, further study suggested that IL-6 may be an early part of the endogenous regenerative response as the cytokine colocalised with growth-associated membrane phosphoprotein-43 in some putative regenerating axons, and potently stimulated neuritogenesis in retinal ganglion cells in culture, an effect that was additive to that of ciliary neurotrophic factor. These data comprise clear evidence that IL-6 is actively involved in the attempt of injured retinal ganglion cells to regenerate their axons.
Resumo:
In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.
Resumo:
Introduction: Prolyl hydroxylase (PHD) inhibitors can induce a proangiogenic response that stimulates regeneration in soft and hard tissues. However, the effect of PHD inhibitors on the dental pulp is unclear. The purpose of this study was to evaluate the effects of PHD inhibitors on the proangiogenic capacity of human dental pulp–derived cells. Methods: To test the response of dental pulp–derived cells to PHD inhibitors, the cells were exposed to dimethyloxalylglycine, desferrioxamine, L-mimosine, and cobalt chloride. To assess the response of dental pulp cells to a capping material supplemented with PHD inhibitors, the cells were treated with supernatants from calcium hydroxide. Viability, proliferation, and protein synthesis were assessed by formazan formation, 3[H]thymidine, and 3[H]leucine incorporation assays. The effect on the proangiogenic capacity was measured by immunoassays for vascular endothelial growth factor (VEGF). Results: We found that all 4 PHD inhibitors can reduce viability, proliferation, and protein synthesis at high concentrations. At nontoxic concentrations and in the presence of supernatants from calcium hydroxide, PHD inhibitors stimulated the production of VEGF in dental pulp–derived cells. When calcium hydroxide was supplemented with the PHD inhibitors, the supernatants from these preparations did not significantly elevate VEGF levels. Conclusions: These results show that PHD inhibitors can stimulate VEGF production of dental pulp–derived cells, suggesting a corresponding increase in their proangiogenic capacity. Further studies will be required to understand the impact that this might have on pulp regeneration.
Resumo:
In this study the regulation of GH-receptor gene (GHR/GHBP) transcription by different concentrations of GH (0, 12.5, 25, 50, 150, 500 ng/ml) with and without variable TSH concentrations (0.5, 2, 20 mU/l) in primary human thyroid cells cultured in serum-free hormonally-defined medium was studied. The incubation time was 6 h and GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification at hourly intervals. Correlating with the GH-concentrations added a constant and significant increase of GHR/GHBP gene transcription was found. After the addition of 12.5 ng/ml GH, GHR/GHBP mRNA concentration remained constant over the incubation period of 6 h but in comparison with the experiments where no GH was added there was a significant change of GHR/GHBP mRNA expression. Following the addition of 25 ng/ml GH a slight but further increase of GHR/GHBP transcription products was seen which increased even more in the experiments where higher GH concentrations were used. These data focusing on GHR/GHBP gene transcription derived from cDNA synthesis and quantitative PCR amplification were confirmed by run-on experiments. Furthermore, cycloheximide did not affect these changes supporting the notion that GH stimulates GHR/GHBP gene transcription directly. In a second set of experiments, in combination with variable TSH levels, identical GH concentrations were used and no difference in either GHR/GHBP mRNA levels or in transcription rate (run-on experiments) could be found. In conclusion, we report data showing that primary thyroid cells express functional GH-receptors in which GH has a direct and dose dependent effect on the GHR/GHBP gene transcription. Furthermore, TSH does not a have a major impact on GHR/GHBP gene regulation.
Resumo:
Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1alpha and HIF-2alpha, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1alpha or HIF-2alpha by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.