986 resultados para Step potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcopyrite Cu(In,Al)Se-2 (CIAS) thin films are grown on stainless steel substrate through one-step electrodeposition at room temperature. Indium is partially replaced with aluminum to increase the band gap of CuInSe2 without creating significant change in the original structure. The deposition potential is optimized at -0.8 V (vs. SCE) and annealing of the films is performed in vacuum to remove binary phases present in the as-deposited films. In/Al ratio is varied from 1/9 to 8/2, to find the suitability for solar cell fabrication. For In/Al ratio of less than 8/2, CuAlSe2 phase is formed in the film in addition to the CIAS phase. Depth profile X-ray photoelectron spectroscopy analysis of the CIAS sample prepared with In/Al ratio of 8/2 in the precursor solution confirmed the existence of single phase CIAS throughout the film. This film showed p-type conductivity while the rest of the samples with In/Al ratio less than 8/2 showed n-type conductivity. The band gap of the film varied from 1.06 to 1.45 eV, with variation in deposition potential. Structural, optical, morphological, compositional and electrical characterizations are carried out to establish the suitability of this film for solar cell fabrication. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents an experimental approach for evaluating the various flight characteristics of a mahogany seed in its autorotative descent. Analytical formulae proposed by Yasuda and Azuma are used to interpret the results. The findings are used in the development of a sophisticated blade element computational model, primarily to analyse planar autorotating systems. This approximate computational approach is then used to predict the flight performance of mahogany seeds and the results are compared with experimental data. The potential use of the computational model in the design of autorotating systems is then brought to light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new general route for the synthesis of novel beta-aryl-beta-(methylthio)acroleins, a class of stable potential 1,3-dielectrophilic synthons, has been reported. The overall protocol involves treatment of either beta-chloroacroleins or their precursor iminium salts (generated in situ from the corresponding active methylene ketones under Vilsmeier-Haack reaction conditions) with S,S-dimethyldithiocarbonates (DDC)/aqueous KOH in either a one-pot or two-step process. The dimethyldithiocarbonate (DDC)/30% aqueous KOH has been shown to be an excellent source of methylthiolate anion. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors-phase consistency as well as amplitude covariation across trials-but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over-or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-step electron tunneling, or “hopping,” has become a fast-developing research field with studies ranging from theoretical modeling systems, inorganic complexes, to biological systems. In particular, the field is exploring hopping mechanisms in new proteins and protein complexes, as well as further understanding the classical biological hopping systems such as ribonuclease reductase, DNA photolyases, and photosystem II. Despite the plethora of natural systems, only a few biologically engineered systems exist. Engineered hopping systems can provide valuable information on key structural and electronic features, just like other kinds of biological model systems. Also, engineered systems can harness common biologic processes and utilize them for alternative reactions. In this thesis, two new hopping systems are engineered and characterized.

The protein Pseudomonas aeruginosa azurin is used as a building block to create the two new hopping systems. Besides being well studied and amenable to mutation, azurin already has been used to successfully engineer a hopping system. The two hopping systems presented in this thesis have a histidine-attached high potential rhenium 4,7-dimethyl-1,10-phenanthroline tricarbonyl [Re(dmp)(CO)3] + label which, when excited, acts as the initial electron acceptor. The metal donor is the type I copper of the azurin protein. The hopping intermediates are all tryptophan, an amino acid mutated into the azurin at select sites between the photoactive metal label and the protein metal site. One system exhibits an inter-molecular hopping through a protein dimer interface; the other system undergoes intra-molecular multi-hopping utilizing a tryptophan “wire.” The electron transfer reactions are triggered by excitation of the rhenium label and monitored by UV-Visible transient absorption, luminescence decays measurements, and time-resolved Infrared spectroscopy (TRIR). Both systems were structurally characterized by protein X-ray crystallography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phases of the outsourcing process and the actions required are discussed. The most difficult and the most important phase of o a successful outsourcing process is to know what activities to outsource. The criteria for suppliers selection must be developed and should cover the reasons why the activity is being outsourced, the expected benefits and potential dangers. Contract negotiation is a very important phase of the outsourcing contract in which rules of the outsourcing are set. The transfer of activity phase corresponds to the reassignment of control of the outsourced activity from the outsourcer to the contractor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional agricultural systems are threatened world-wide mainly due to the introduction of modern agricultural techniques and the emigration of farm labourers from remote rural villages. The objective of the programme 'Globally Important Agricultural Heritage Systems' (GIAHS), initiated by the Food and Agriculture Organization (FAO) of the United Nations in 2002, is dynamic conservation of traditional agricultural systems. This article addresses the definition and content of agricultural heritage systems and discusses conservation options in the light of developing rural tourism. An explorative survey was conducted in Longxian village, situated in Zhejiang Province, southern China, focusing on the tourism potential of a typical Rice-Fish Agricultural System. The identification of heritage resources is a first step in the process of transforming an agricultural landscape into a cultural tourism landscape. However, the future of these landscapes is in the hands of a range of stakeholders and depends on their capacity to manage, in a sustainable way, tourism development strategies alongside conservation policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyelectrolytes have been widely used as building blocks for the creation of thickness-controllable multilayer thin films in a layer-by-layer fashion, and also been used as flocculants or stabilizer of colloids. This paper reports novel finding that a kind of polyelectrolyte, polyamines, can facilely induce HAuCl4 to spontaneously form well-stabilized gold nanoparticles without the additional step of introducing a reducing reagent during the elevation of temperature, even at room temperature in some cases. The polymer chain-confined microenvironment and the acid-induced evolution of amide of such kind of polyelectrolyte solution play an important role in the nucleation and growth of gold nanoparticles. This method would not only be helpful to gain an insight into the formation of gold nanoparticles in polyelectrolyte systems, but also provide a novel and facile one-step polyelectrolyte-based synthetic route to polyelectrolyte protected gold nanoparticles in aqueous media for potential applications. More importantly, this strategy will be general to the preparation of other nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular structural parameters of indophenol and its derivatives were calculated by semi-empirical molecular orbital quantum chemical method,The relation between molecular structural parameters and formal potentials was analyzed by principal factor analysis and multiple Linear regression method. It was found that the formal potential of indophenols has a good relation with two-center electron exchange energy, E-ex (2), resonance energy of O-C bond, E-ex (C-1-O), and molecular ionization potential, I-p, among 19 moleclular structural parameters. The regression equation is E-0' = 1. 47 x 10 (-3) E-ex (two) - 5. 74 x 10 (-2) E-ex (C-1 - O) - 1. 41 x 10 (-2) I-p with RC = 0. 9999 and SD = 0. 00424. It was confirmed by the relation between structure parameters and formal potentials, and the thermodynamic stability of its intermediate products that the H (+) ionization is prior to the electron transfer step in the oxidation mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen spillover and back spillover on Pt/TiO2 catalysts have been studied by a potential dynamic sweep method. The characteristics of I-V profiles of Pt/TiO2 electrodes in the three potential sweep regions are different from those of Pt and TiO2 electrodes. The catalytic role of Pt/TiO2 in oxygen spillover and back spillover is identified. It decreases, and the electrochemical oxygen adsorption (or desorption) increases with elevating temperature of hydrogen post-treatment of Pt/TiO2; to a certain extent (hydrogen post-treatment of Pt/TiO2 at 700 degrees C), the control step of oxygen electrode process (anodic oxidation or cathodic reduction) changes from oxygen diffusion to electrochemical oxygen adsorption or desorption, respectively. Increasing the amount of Pt supported on TiO2 enhances the processes of oxygen spillover and back spillover. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) techniques to see whether doses to critical structures could be reduced while maintaining planning target volume (PTV) coverage in patients receiving conventional radiotherapy (RT) for carcinoma of the maxillary sinus because of the risk of radiation-induced complications, particularly visual loss. Six patients who had recently received conventional RT for carcinoma of the maxillary sinus were studied. Conventional RT, 3D-CRT, and step-and-shoot IMRT plans were prepared using the same 2-field arrangement. The effect of reducing the number of segments in the IMRT beams was investigated. 3D-CRT and IMRT reduced the brain and ipsilateral parotid gland doses compared with the conventional plans. IMRT reduced doses to both optic nerves; for the contralateral optic nerve, 15-segment IMRT plans delivered an average maximal dose of 56.4 Gy (range 53.9–59.3) compared with 65.7 Gy (range 65.3–65.9) and 64.2 Gy (range 61.4–65.6) for conventional RT and 3D-CRT, respectively. IMRT also gave improved PTV homogeneity and improved coverage, with an average of 8.5% (range 7.0–11.7%) of the volume receiving