992 resultados para Steiner Triple Systems
Resumo:
O objetivo deste trabalho é analisar o impacto dos Sistemas de Gestão Integrados (SGI) no desempenho organizacional sob a óptica do Triple Bottom Line (TBL), verificando se esta implementação auxilia a empresa a se tornar mais sustentável. A abordagem multi-método utilizada está dividida em três partes. A primeira compreende uma revisão sistemática da literatura, tendo como base a abordagem bibliométrica. A base de dados escolhida para a seleção dos artigos que compõem a amostra foi a ISI Web of Knowledge (Web of Science). As análises conduzidas sugerem lacunas na literatura a serem pesquisadas de modo a relacionar a integração dos sistemas de gestão como meio para as organizações tornarem-se mais sustentáveis, auxiliando assim na elaboração de um modelo teórico e das hipóteses de pesquisa. Os resultados parciais obtidos ressaltam a lacuna na literatura de estudos nessa área, principalmente que contemplem a dimensão social do Triple Bottom Line. Lacunas na literatura foram identificadas também no que se refere à análise do impacto da adoção dessas abordagens normativas no desempenho organizacional. A segunda etapa da metodologia é composta por estudos de casos múltiplos em empresas de diferentes setores e que tenham implantado sistemas de gestão de maneira integrada. Os resultados obtidos mostram que a certificação auxilia no desenvolvimento de ações sustentáveis, resultando em impactos econômicos, ambientais e sociais positivos. Nesta etapa, testou-se o modelo e as hipóteses levantadas na abordagem bibliométrica. A terceira etapa da metodologia é composta por análises estatísticas de dados secundários extraídos da revista Exame ?Maiores e Melhores\'. Os dados do ano de 2014 das empresas foram tratados por meio do software MINITAB 17 ®. Por meio do teste de mediana de mood, as amostras foram testadas e apresentaram diferenças estatisticamente significativas para o desempenho das empresas em diferentes setores. De maneira geral, as empresas com SGI apresentam melhor desempenho econômico do que as demais. Com a mesma base de dados, utilizando o modelo de equações estruturais e o software Smart PLS 2.0, criou-se um diagrama de caminhos analisando os constructos (SGI) com variáveis de desempenho (Endividamento, Lucratividade, Patrimônio, Crescimento e Retorno). O modelo de equações estruturais testado apresentou força para a relação entre SGI com Endividamento, Lucratividade, Patrimônio e Crescimento. As diferentes metodologias apresentadas contribuíram para responder a hipótese e afirmar com base na amostra deste trabalho que o SGI leva as empresas a terem melhor desempenho econômico, ambiental e social (baseado no TBL).
Resumo:
We provide a complete characterization of the astrophysical properties of the σ Ori Aa, Ab, B hierarchical triple system and an improved set of orbital parameters for the highly eccentric σ Ori Aa, Ab spectroscopic binary. We compiled a spectroscopic data set comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filhés method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the σ Ori Aa, Ab, B system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information on photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the σ Ori Aa, Ab pair. We provided indirect arguments indicating that σ Ori B is a fast-rotating early B dwarf. The FASTWIND+BONNSAI analysis showed that the Aa, Ab pair contains the hottest and most massive components of the triple system while σ Ori B is a bit cooler and less massive. The derived stellar ages of the inner pair are intriguingly younger than the one widely accepted for the σ Orionis cluster, at 3 ± 1 Ma. The outcome of this study will be of key importance for a precise determination of the distance to the σ Orionis cluster, the interpretation of the strong X-ray emission detected for σ Ori Aa, Ab, B, and the investigation of the formation and evolution of multiple massive stellar systems and substellar objects.
Resumo:
The paper lays down a strategy consisting of Innovation, Internalisation of Externalities, and Integration – called Triple I. ‘Innovation’ is seen along value chain management in a systems perspective, driven by competition and participation of stakeholders. ‘Internalisation’ refers to endogenous efforts by industry to assess externalities and to foster knowledge generation that leads to benefits for both business and society. ‘Integration’ highlights the role business and its various forms of cooperation might play in policy integration within Europe and beyond. Looking forward towards measures to be taken, the paper explores some frontiers for a partnership between public and private sector: i) Increasing resource productivity, lowering material cost, ii) Energy integration with Southeast Europe and Northern Africa, iii) Urban mobility services and public transport, iv) Tradable emission permits beyond Europe. Finally, some conclusions from the perspective of the College of Europe are drawn.
Resumo:
We compare theoretically the tripartite entanglement available from the use of three concurrent x(2) nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock-Furusawa inequalities. We also define three-mode generalizations of the Einstein-Podolsky-Rosen paradox which are an alternative for demonstrating the inseparability of the density matrix.
Resumo:
Petrographic and geochemical analyses of basaltic rocks dredged from the first segment of the Southwest Indian Ridge near the Rodriguez Triple Junction have been completed in order to investigate water-rock interaction processes during mid-ocean ridge (MOR) hydrothermal alteration in the Indian Ocean. In the study area, we have successfully recovered a serial section of upper oceanic crust exposed along a steep rift valley wall which was uplifted and emplaced along a low angle normal fault. On the basis of microscopic observation, dredged samples are classified into three types: fresh lavas, low-temperature altered rocks, and high-temperature altered rocks. The fresh lavas have essentially the same chemical composition as typical N-MORB, although LILE and Nb are slightly enriched and depleted, respectively. Low temperature alteration brought about the enrichment of K2O, Rb, and U due to the presence of K-rich celadonite and U-adsorption onto Fe-oxyhydroxide and clay minerals. On the other hand, chloritization, albitization, and addition of base metals by high temperature hydrothermal alteration result in enrichments of MnO, MgO, Na2O, Cu, and Zn and depletions of CaO, K2O, Cr, Co, Ni, Rb, Sr, and Ba. In addition, U-enrichment is also observable in the high temperature altered rocks probably due to the decrease of uranite solubility in the reducing high-temperature hydrothermal solution. These petrological and geochemical features are comparable to those of the volcanic zone to transition zone rocks in the DSDP/ODP Hole 504B, indicating that our samples were recovered from the upper ~1000 m section of the oceanic crust. Only the alteration minerals related to off-axis alteration are absent in our samples dredged from near the spreading axis. The similarity of alteration between our samples from the Indian Ocean and the Hole 504B rocks from the Pacific Ocean suggests that MOR hydrothermal systems are probably similar across all world oceans.
Resumo:
Food production and consumption for cities has become a global concern due to increasing numbers of people living in urban areas, threatening food security. There is the contention that people living in cities have become disconnected with food production, leading to reduced nutrition in diets and increased food waste. Integrating food production into cities (urban agriculture) can help alleviate some of these issues. Lack of space at ground level in high-density urban areas has accelerated the idea of using spare building surfaces for food production. There are various growing methods being used for food production on buildings, which can be split into two main types, soil-less systems and soil-based systems. This paper is a holistic assessment (underpinned by the triple bottom line of sustainable development) of these two types of systems for food production on buildings, looking at the benefits and limitation of each type in this context. The results illustrate that soil-less systems are more productive per square metre, which increases the amount of locally grown, fresh produce available in urban areas. The results also show that soil-based systems for cultivation on buildings are more environmentally and socially beneficial overall for urban areas than soil-less systems.
Resumo:
We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.
Experimental and modeling studies of forced convection storage and drying systems for sweet potatoes
Resumo:
Sweet potato is an important strategic agricultural crop grown in many countries around the world. The roots and aerial vine components of the crop are used for both human consumption and, to some extent as a cheap source of animal feed. In spite of its economic value and growing contribution to health and nutrition, harvested sweet potato roots and aerial vine components has limited shelf-life and is easily susceptible to post-harvest losses. Although post-harvest losses of both sweet potato roots and aerial vine components is significant, there is no information available that will support the design and development of appropriate storage and preservation systems. In this context, the present study was initiated to improve scientific knowledge about sweet potato post-harvest handling. Additionally, the study also seeks to develop a PV ventilated mud storehouse for storage of sweet potato roots under tropical conditions. In study one, airflow resistance of sweet potato aerial vine components was investigated. The influence of different operating parameters such as airflow rate, moisture content and bulk depth at different levels on airflow resistance was analyzed. All the operating parameters were observed to have significant (P < 0.01) effect on airflow resistance. Prediction models were developed and were found to adequately describe the experimental pressure drop data. In study two, the resistance of airflow through unwashed and clean sweet potato roots was investigated. The effect of sweet potato roots shape factor, surface roughness, orientation to airflow, and presence of soil fraction on airflow resistance was also assessed. The pressure drop through unwashed and clean sweet potato roots was observed to increase with higher airflow, bed depth, root grade composition, and presence of soil fraction. The physical properties of the roots were incorporated into a modified Ergun model and compared with a modified Shedd’s model. The modified Ergun model provided the best fit to the experimental data when compared with the modified Shedd’s model. In study three, the effect of sweet potato root size (medium and large), different air velocity and temperature on the cooling/or heating rate and time of individual sweet potato roots were investigated. Also, a simulation model which is based on the fundamental solution of the transient equations was proposed for estimating the cooling and heating time at the centre of sweet potato roots. The results showed that increasing air velocity during cooling and heating significantly (P < 0.05) affects the cooling and heating times. Furthermore, the cooling and heating times were significantly different (P < 0.05) among medium and large size sweet potato roots. Comparison of the simulation results with experimental data confirmed that the transient simulation model can be used to accurately estimate the cooling and heating times of whole sweet potato roots under forced convection conditions. In study four, the performance of charcoal evaporative cooling pad configurations for integration into sweet potato roots storage systems was investigated. The experiments were carried out at different levels of air velocity, water flow rates, and three pad configurations: single layer pad (SLP), double layers pad (DLP) and triple layers pad (TLP) made out of small and large size charcoal particles. The results showed that higher air velocity has tremendous effect on pressure drop. Increasing the water flow rate above the range tested had no practical benefits in terms of cooling. It was observed that DLP and TLD configurations with larger wet surface area for both types of pads provided high cooling efficiencies. In study five, CFD technique in the ANSYS Fluent software was used to simulate airflow distribution in a low-cost mud storehouse. By theoretically investigating different geometries of air inlet, plenum chamber, and outlet as well as its placement using ANSYS Fluent software, an acceptable geometry with uniform air distribution was selected and constructed. Experimental measurements validated the selected design. In study six, the performance of the developed PV ventilated system was investigated. Field measurements showed satisfactory results of the directly coupled PV ventilated system. Furthermore, the option of integrating a low-cost evaporative cooling system into the mud storage structure was also investigated. The results showed a reduction of ambient temperature inside the mud storehouse while relative humidity was enhanced. The ability of the developed storage system to provide and maintain airflow, temperature and relative humidity which are the key parameters for shelf-life extension of sweet potato roots highlight its ability to reduce post-harvest losses at the farmer level, particularly under tropical climate conditions.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.