935 resultados para Steam reforming of methanol
Resumo:
H2 is considered to be a potential alternative fuel due to its high energy density by weight and working with pollution free. Currently, ethanol conversion to hydrogen has drawn much attention because it provides a viable way for H2 production from renewable resources. In this work, we combined theoretical and experimental efforts to study the reaction mechanism of ethanol steam reforming on Rh catalysts. The results suggest that acetaldehyde (CH3CHO) is an important reaction intermediate in the reaction on nano-sized Rh catalyst. Our theoretical work suggests that the H-bond effect significantly modifies the ethanol decomposition pathway. The possible reaction pathway on Rh (211) surface is suggested as: CH3CH2OH → CH3CH2O → CH3CHO → CH3CO → CH3+CO → CH2+CO → CH+CO → C+CO, followed by the water gas shift reaction to yield H2 and CO2. It was found that that the water gas shift reaction is paramount in the ethanol steam reforming process.
Resumo:
NiO/Al(2)O(3) catalyst precursors were prepared by simultaneous precipitation, in a Ni:Al molar ratio of 3:1, promoted with Mo oxide (0.05, 0.5, 1.0 and 2.0 wt%). The solids were characterized by adsorption of N(2), XRD, TPR, Raman spectroscopy and XPS, then activated by H(2) reduction and tested for the catalytic activity in methane steam reforming. The characterization results showed the presence of NiO and Ni(2)AlO(4) in the bulk and Ni(2)AlO(4) and/or Ni(2)O(3) and MoO(4)(-2) at the surface of the samples. In the catalytic tests, high stability was observed with a reaction feed of 4:1 steam/methane. However, at a steam/methane ratio of 2: 1, only the catalyst with 0.05% Mo remained stable throughout the 500 min of the test. The addition of Mo to Ni catalysts may have a synergistic effect, probably as a result of electron transfer from the molybdenum to the nickel, increasing the electron density of the catalytic site and hence the catalytic activity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fuel cells are electrochemical energy conversion devices that convert fuel and oxidant electrochemically into electrical energy, water and heat. Compared to traditional electricity generation technologies that use combustion processes to convert fuel into heat, and then into mechanical energy, fuel cells convert the hydrogen and oxygen chemical energy into electrical energy, without intermediate conversion processes, and with higher efficiency. In order to make the fuel cells an achievable and useful technology, it is firstly necessary to develop an economic and efficient way for hydrogen production. Molecular hydrogen is always found combined with other chemical compounds in nature, so it must be isolated. In this paper, the technical, economical and ecological aspects of hydrogen production by biogas steam reforming are presented. The economic feasibility calculation was performed to evaluate how interesting the process is by analyzing the investment, operation and maintenance costs of the biogas steam reformer and the hydrogen production cost achieved the value of 0.27 US$/kWh with a payback period of 8 years. An ecological efficiency of 94.95%, which is a good ecological value, was obtained. The results obtained by these analyses showed that this type of hydrogen production is an environmentally attractive route. © 2013 Elsevier Ltd.
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
Global warming issue becomes more significant to human beings and other organisms on the earth. Among many greenhouse gases, carbon dioxide (CO2) has the largest contribution to global warming. To find an effective way to utilize the greenhouse gas is urgent. It is the best way to convert CO2 to useful compounds. CO2 reforming of methane is an attractive process to convert CO2 and methane into synthesis gas (CO/H2), which can be used as a feedstock for gasoline, methanol, and other hydrocarbons. Nickel and cobalt were found to have good activity for CO2 reforming. However, they have a poor stability due to carbon deposition. This research developed efficient Ni-Co solid solution catalysts with excellent activities and high stability for CO2 reforming of methane. First, the structure of binary oxide solid solution of nickel and cobalt was investigated. It was found that while the calcination of Ni(NO3)2 and Co(NO3)2 mixture with 1:1 molar ratio at a high temperature above 800 oC generated NiO-CoO solid solution, only Ni3O4-Co3O4 solid solution was observed after the calcination at a low temperature of 500 oC. Furthermore, if the calcination was carried out at a medium temperature arranged from 600 to 700 oC, both NiO-CoO and Ni3O4-Co3O4 solid solutions can be formed. This occurred because Co3O4 can induce the formation of Ni3O4, whereas NiO can stabilize CoO. In addition, the lattice parameter of Ni3O4, which was predicted by using Vegard’s Law, is 8.2054 Å. As a very important part of this dissertation, Ni-Co solid solution was evaluated as catalysts for CO2 reforming of methane. It was revealed that nickel-cobalt solid solution showed excellent catalytic performance and high stability for CO2 reforming of methane. However, the stability of Ni-Co solid solution catalysts is strongly dependent on their composition and preparation condition. The optimum composition is 50%Ni-50%Co. Furthermore, the structure of Ni-Co catalysts was characterized by XRD, Vvis, TPR, TPD, BET, AES, TEM, XANES and EXAFS. The relationship between the structure and the catalytic performance was established: (1) The reduced NiO-CoO solid solution possesses better catalytic performance and stability than the reduced Ni3O4-Co3O4 solid solution. (2) Ni is richer on surface in Ni-Co catalysts. And (3) the reduction of Ni-Co-O solid solution generated two types of particles, small and large particles. The small ones are dispersed on large ones as catalytic component.
Resumo:
The brewing process is an energy intensive process that uses large quantities of heat and electricity. To produce this energy requires a high, mainly fossil fuel consumption and the cost of this is increasing each year due to rising fuel costs. One of the main by-products from the brewing process is Brewers Spent Grain (BSG), an organic residue with very high moisture content. It is widely available each year and is often given away as cattle feed or disposed of to landfill as waste. Currently these methods of disposal are also costly to the brewing process. The focus of this work was to investigate the energy potential of BSG via pyrolysis, gasification and catalytic steam reforming, in order to produce a tar-free useable fuel gas that can be combusted in a CHP plant to develop heat and electricity. The heat and electricity can either be used on site or exported. The first stage of this work was the drying and pre-treatment of BSG followed by characterisation to determine its basic composition and structure so it can be evaluated for its usefulness as a fuel. A thorough analysis of the characterisation results helps to better understand the thermal behaviour of BSG feedstock so it can be evaluated as a fuel when subjected to thermal conversion processes either by pyrolysis or gasification. The second stage was thermochemical conversion of the feedstock. Gasification of BSG was explored in a fixed bed downdraft gasifier unit. The study investigated whether BSG can be successfully converted by fixed bed downdraft gasification operation and whether it can produce a product gas that can potentially run an engine for heat and power. In addition the pyrolysis of BSG was explored using a novel “Pyroformer” intermediate pyrolysis reactor to investigate the behaviour of BSG under these processing conditions. The physicochemical properties and compositions of the pyrolysis fractions obtained (bio-oil, char and permanent gases) were investigated for their applicability in a combined heat power (CHP) application.
Resumo:
Gas phase photoreforming of methanol using a Pt/TiO2 photocatalyst has been performed under flow conditions at elevated temperatures. Comparing the activity of the reforming process as a function of temperature under dark and irradiated conditions shows a significant enhancement in the rate of H2 production using the photo-assisted conditions at temperatures between 100-140 °C. At higher temperatures, the effect of irradiation is small with the process dominated by the thermal process. Deactivation of the catalyst was observed under irradiation but the catalyst was easily regenerated using an oxygen treatment at 120 °C. Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS) showed that the activity of the catalyst could be correlated with the presence of the photogenerated trapped electrons. In addition, lower amounts of CO adsorbed on Pt, compared to those observed in the dark reaction, were found for the UV-irradiated systems. It is proposed that CO and adsorbed intermediates, such as formate, can act as inhibitors in the photoreforming process and this is further supported by the observation that, before and after the regeneration process in O2, the CO and surface adsorbed organic intermediate products are removed and the activity is recovered.
Resumo:
A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts’ stability when working under more severe reaction conditions.
Resumo:
Catalytic CO2 reforming of biomass tar on palygorskite-supported nickel catalysts using toluene as a model compound of biomass tar was investigated. The experiments were performed in a bench scale installation a fixed bed reactor. All experiments were carried out at 650, 750, 800 °C and atmospheric pressure. The effect of Ni loading, reaction temperature and concentration of CO2 on H2 yield and carbon deposit was investigated. Ni/Palygorskite (Ni/PG) catalysts with Ni/PG ratios of 0%, 2%, 5% and 8% were tested, the last two show the best performance. H2 yield and carbon deposit diminished with the increase of reaction temperature, Ni loading, and CO2 concentration.
Resumo:
Infrared spectra are reported of methanol adsorbed at 295 K on reduced Cu/SiO2 and on Cu/SiO2 which had been preoxidised by exposure to excess nitrous oxide. Methanol was chemisorbed on reduced Cu/SiO2 to give methoxy species on both silica and copper, gave a trace of formate on copper via reaction with residual surface oxygen, and was weakly adsorbed at SiOH sites on the silica support. Heating the adsorbed species at 393 K led to the loss of methoxy groups on copper and the concomitant formation of a bidentate surface formate. Heating reduced Cu/SiO2 in methanol at 538 K initially gave both gaseous and adsorbed (on Cu) methyl formate which subsequently decomposed to CO and hydrogen. The reactions of methanol with oxidised Cu/SiO2 were similar to those for the reduced catalyst although surface oxygen promoted the formation of surface methoxy groups on copper. Subsequent heating at 393 K led first to unidentate formate before the appearance of bidentate formate.
Resumo:
FTIR spectra are reported of methanol adsorbed at 295 K on ZnO/SiO 2, on reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methanol on ZnO/SiO2 gave methoxy species on ZnO and SiO, in addition to both strongly and weakly physisorbed methanol on SiO2. The corresponding adsorption of methanol on reduced Cu/ZnO/SiO2 also gave methoxy species on Cu and a small amount of bridging formate. Reaction of methanol with a reoxidised Cu/ZnO/SiO2 catalyst resulted in an enhanced quantity of methoxy species on Cu. Heating adsorbed species on Cu/ZnO/SiO2 at 393 K led to the loss of methoxy groups on Cu and the concomitant formation of formate species on both ZnO and Cu. The comparable reaction on a reoxidised Cu/ZnO/SiO2 catalyst gave an increased amount of formate species on ZnO and this correlated with an increased quantity of methoxy groups lost from Cu. An explanation is given in terms of adsorption of formate and formaldehyde species at special sites located at the copper/zinc oxide interface.
Resumo:
The CO2-methane reformation reaction over Ni/SiO2 catalysts has been extensively studied using a range of temperature-programmed techniques and characterisation of the catalysts by thermogravimetry (TG), X-ray diffraction (XRD) and electron microscopy (TEM). The results indicate a strong correlation between the microstructure of the catalyst and its performance. The role of both CO2 and CH4 in the reaction has been investigated and the role of methyl radicals in the reaction mechanism highlighted. A reaction mechanism involving dissociatively adsorbed CO2 and methyl radicals has been proposed.
Resumo:
The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.
Resumo:
Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.
Resumo:
The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.