935 resultados para Statistics|Economics, Finance|Engineering, Electronics and Electrical|Physics, General
Resumo:
Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Experimental and theoretical studies regarding noise processes in various kinds of AlGaAs/GaAs heterostructures with a quantum well are reported. The measurement processes, involving a Fast Fourier Transform and analog wave analyzer in the frequency range from 10 Hz to 1 MHz, a computerized data storage and processing system, and cryostat in the temperature range from 78 K to 300 K are described in detail. The current noise spectra are obtained with the “three-point method”, using a Quan-Tech and avalanche noise source for calibration. ^ The properties of both GaAs and AlGaAs materials and field effect transistors, based on the two-dimensional electron gas in the interface quantum well, are discussed. Extensive measurements are performed in three types of heterostructures, viz., Hall structures with a large spacer layer, modulation-doped non-gated FETs, and more standard gated FETs; all structures are grown by MBE techniques. ^ The Hall structures show Lorentzian generation-recombination noise spectra with near temperature independent relaxation times. This noise is attributed to g-r processes in the 2D electron gas. For the TEGFET structures, we observe several Lorentzian g-r noise components which have strongly temperature dependent relaxation times. This noise is attributed to trapping processes in the doped AlGaAs layer. The trap level energies are determined from an Arrhenius plot of log (τT2) versus 1/T as well as from the plateau values. The theory to interpret these measurements and to extract the defect level data is reviewed and further developed. Good agreement with the data is found for all reported devices. ^
Resumo:
Electronic noise has been investigated in AlxGa1−x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoç and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ∼3 nm. A non-doped intrinsic buffer layer of ∼5 nm separates the Si-doped donors in the AlxGa1−xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1−xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. ^ The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1−xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (τT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1−xN donor layer, which can be altered by a negative or positive gate bias VGS. ^ Altogether, these frontier nitride-based devices are promising for bluish light optoelectronic devices and lasers; however, the noise, though well understood, indicates that the purity of the constituent layers should be greatly improved for future technological applications. ^
Resumo:
This dissertation introduces the design of a multimodal, adaptive real-time assistive system as an alternate human computer interface that can be used by individuals with severe motor disabilities. The proposed design is based on the integration of a remote eye-gaze tracking system, voice recognition software, and a virtual keyboard. The methodology relies on a user profile that customizes eye gaze tracking using neural networks. The user profiling feature facilitates the notion of universal access to computing resources for a wide range of applications such as web browsing, email, word processing and editing. ^ The study is significant in terms of the integration of key algorithms to yield an adaptable and multimodal interface. The contributions of this dissertation stem from the following accomplishments: (a) establishment of the data transport mechanism between the eye-gaze system and the host computer yielding to a significantly low failure rate of 0.9%; (b) accurate translation of eye data into cursor movement through congregate steps which conclude with calibrated cursor coordinates using an improved conversion function; resulting in an average reduction of 70% of the disparity between the point of gaze and the actual position of the mouse cursor, compared with initial findings; (c) use of both a moving average and a trained neural network in order to minimize the jitter of the mouse cursor, which yield an average jittering reduction of 35%; (d) introduction of a new mathematical methodology to measure the degree of jittering of the mouse trajectory; (e) embedding an onscreen keyboard to facilitate text entry, and a graphical interface that is used to generate user profiles for system adaptability. ^ The adaptability nature of the interface is achieved through the establishment of user profiles, which may contain the jittering and voice characteristics of a particular user as well as a customized list of the most commonly used words ordered according to the user's preferences: in alphabetical or statistical order. This allows the system to successfully provide the capability of interacting with a computer. Every time any of the sub-system is retrained, the accuracy of the interface response improves even more. ^
Resumo:
This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft's High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.
Resumo:
In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Resumo:
Recent popularity of the IEEE 802.11b Wireless Local Area Networks (WLANs) in a host of current-day applications has instigated a suite of research challenges. The 802.11b WLANs are highly reliable and wide spread. In this work, we study the temporal characteristics of RSSI in the real-working environment by conducting a controlled set of experiments. Our results indicate that a significant variability in the RSSI can occur over time. Some of this variability in the RSSI may be due to systematic causes while the other component can be expressed as stochastic noise. We present an analysis of both these aspects of RSSI. We treat the moving average of the RSSI as the systematic causes and the noise as the stochastic causes. We give a reasonable estimate for the moving average to compute the noise accurately. We attribute the changes in the environment such as the movement of people and the noise associated with the NIC circuitry and the network access point as causes for this variability. We find that the results of our analysis are of primary importance to active research areas such as location determination of users in a WLAN. The techniques used in some of the RF-based WLAN location determination systems, exploit the characteristics of the RSSI presented in this work to infer the location of a wireless client in a WLAN. Thus our results form the building blocks for other users of the exact characteristics of the RSSI.
Resumo:
With the growing demand for high-speed and high-quality short-range communication, multi-band orthogonal frequency division multiplexing ultra-wide band (MB-OFDM UWB) systems have recently garnered considerable interest in industry and in academia. To achieve a low-cost solution, highly integrated transceivers with small die area and minimum power consumption are required. The key building block of the transceiver is the frequency synthesizer. A frequency synthesizer comprised of two PLLs and one multiplexer is presented in this thesis. Ring oscillators are adopted for PLL implementation in order to drastically reduce the die area of the frequency synthesizer. The poor spectral purity appearing in the frequency synthesizers involving mixers is greatly improved in this design. Based on the specifications derived from application standards, a design methodology is presented to obtain the parameters of building blocks. As well, the simulation results are provided to verify the performance of proposed design.
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^
Resumo:
Finite Difference Time Domain (FDTD) Method and software are applied to obtain diffraction waves from modulated Gaussian plane wave illumination for right angle wedges and Fast Fourier Transform (FFT) is used to get diffraction coefficients in a wideband in the illuminated lit region. Theta and Phi polarization in 3-dimensional, TM and TE polarization in 2-dimensional cases are considered respectively for soft and hard diffraction coefficients. Results using FDTD method of perfect electric conductor (PEC) wedge are compared with asymptotic expressions from Uniform Theory of Diffraction (UTD). Extend the PEC wedges to some homogenous conducting and dielectric building materials for diffraction coefficients that are not available analytically in practical conditions. ^