942 resultados para State Universities Retirement System (Ill.)
Resumo:
Description based on: 2008/2009 ; title from cover.
Resumo:
"Annual financial report summary [is] a synopsis of our comprehensive annual financial report."
Resumo:
Report year ends June 30.
Resumo:
Description based on: August 1990; title from caption.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
Title from caption.
Resumo:
Background. Excessive sedation is associated with adverse patient outcomes during critical illness, and a validated monitoring technology could improve care. We developed a novel method, the responsiveness index (RI) of the frontal EMG. We compared RI data with Ramsay clinical sedation assessments in general and cardiac intensive care unit (ICU) patients. Methods. We developed the algorithm by iterative analysis of detailed observational data in 30 medical–surgical ICU patients and described its performance in this cohort and 15 patients recovering from scheduled cardiac surgery. Continuous EMG data were collected via frontal electrodes and RI data compared with modified Ramsay sedation state assessments recorded regularly by a blinded trained observer. RI performance was compared with EntropyTM across Ramsay categories to assess validity. Results. RI correlated well with the Ramsay category, especially for the cardiac surgery cohort (general ICU patients r¼0.55; cardiac surgery patients r¼0.85, both P,0.0001). Discrimination across all Ramsay categories was reasonable in the general ICU patient cohort [PK¼0.74 (SEM 0.02)] and excellent in the cardiac surgery cohort [PK¼0.92 (0.02)]. Discrimination between ‘lighter’ vs ‘deeper’ (Ramsay 1–3 vs 4–6) was good for general ICU patients [PK¼0.80 (0.02)] and excellent for cardiac surgery patients [PK¼0.96 (0.02)]. Performance was significantly better than EntropyTM. Examination of individual cases suggested good face validity. Conclusions. RI of the frontal EMG has promise as a continuous sedation state monitor in critically ill patients. Further investigation to determine its utility in ICU decision-making is warranted.
Resumo:
We present a model of identical coupled two-state stochastic units, each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition.
Resumo:
We report a nuclear magnetic resonance experiment, which simulates the quantum transverse Ising spin system in a triangular configuration, and further demonstrate that multipartite quantum correlations can be used to distinguish between the frustrated and the nonfrustrated regimes in the ground state of this system. Adiabatic state preparation methods are used to prepare the ground states of the spin system. We employ two different multipartite quantum correlation measures to analyze the experimental ground state of the system in both the frustrated and the nonfrustrated regimes. As expected from theoretical predictions, the experimental data confirm that the nonfrustrated regime shows higher multipartite quantum correlations compared to the frustrated one.
Resumo:
Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. (C) 2015 AIP Publishing LLC.
Resumo:
We report the transition from robust ferromagnetism to a spin- glass state in nanoparticulate La0.7Sr0.3MnO3 through solid solution with BaTiO3. The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin- glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from La0.7Sr0.3MnO3 to the otherwise unoccupied Ti-d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.
Resumo:
We have investigated the dispersive properties of excited-doublet four-level atoms interacting with a weak probe field and an intense coupling laser field. We have derived an analytical expression of the dispersion relation for a general excited-doublet four-level atomic system subject to a one-photon detuning. The numerical results demonstrate that for a typical rubidium D1 line configuration, due to the unequal dipole moments for the transitions of each ground state to double excited states, generally there exists no exact dark state in the system. Close to the two-photon resonance, the probe light can be absorbed orgained and propagate in the so-called superluminal form. This system may be used as an optical switch.