989 resultados para Split tensile strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of strain rate on compressive and tensile strength of fly ash based geopolymer concrete were investigated experimentally. Four mixes of geopolymer concrete using different alkaline solutions and under vary curing conditions were prepared. One mix of ordinary Portland cement (OPC) concrete was prepared for comparison. Both Quasi-Static tests using standard MTS and dynamic tests using Split-Hopkinson pressures bar (SHPB) were conducted, which were giving varying strain rate loadings from 10‾⁷ to 103 per second. The strain rate effect is presented as the ratio of dynamic compressive strength to static compressive strength (DIF). Results show that DIFs of geopolymer concrete are generally higher than those of OPC concrete at strain range of 187/s to 346/s (compression tests) and 7/s to 13/s (splitting tensile tests), respectively. This tendency is independent on loading regimes (compression or tension). This suggests that geopolymer concrete can be used as an alternative construction material to OPC concrete for the structures which has a high risk of being subjected to impact loadings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

THERE is an increasing need for biodegradable plastics because they are environmentally friendly and can replace petroleum-based non-degradable plastics which pollute the environment. Starch-derived films reinforced with sugar cane bagasse fibre, which are biodegradable, have been prepared and characterised by gravimetric analysis for moisture uptake, X-ray powder diffraction for crystallinity, and tensile testing for mechanical properties. Results have shown that the addition of bagasse fibre (5 wt%, 10 wt% or 20 wt%) to either (modified) potato starch (Soluble starch) or hydroxypropylated maize starch reduced moisture uptake by up to 30% at 58% relative humidity (RH). Also, the tensile strength and the Young’s Modulus increased up to 63% and 80% respectively, with the maximum value obtained with 5 wt% fibre at 58% RH. However, the tensile strain of the films significantly decreased by up to 84%. The results have been explained based on the crystallinity of the films and the intrinsic properties of starch and bagasse fibres.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanostructured high strength Mg-5%Al-x%Nd alloys were prepared by mechanical alloying. Microstructural characterization reveled average crystalline size to be about 30 nm after mechanical alloying while it increased to about 90 nm after sintering and extrusion. Mechanical properties showed increase in 0.2% yield stress, ultimate tensile strength was attributed to reduction in gain size as well as to the enhanced diffusion after mechanical activation. Although ultra high yield stress was observed from the specimen with 5% Nd, its ductility was reduced to about 1.6%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effects of strain rate (10(-4)-10(-2) s(-1)) on tensile and compressive strength of the Al-Si alloy and Al-Si/graphite composite are investigated. The strain hardening exponent value of the composite was more than that of the alloy for all strain rates during tensile and compressive loading. The yield stress of the composite was more than that of the ultimate tensile strength of the alloy for all strain rates. Tensile and compressive properties of the alloy and composite are dependent on strain rates. The negative strain rate sensitivity was observed for the composite and alloy at lower strain rates during the compression and tension loading respectively. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Addition of boron to cast Ti-6Al-4V alloy leads to significant refinement in grain size, which in turn improves processibilty as well as the mechanical properties of the as-cast alloy. Room temperature tensile and fatigue properties of Wrought Ti-6Al-4V-B alloys with B up to 0.09 wt.% are investigated. Thermo-mechanical processing at 950 degrees C caused kinking of alpha lamellae and alignment of TiB particles in the flow direction with a negligible change in prior beta grain and colony sizes, indicating the absence of dynamic recrystallisation during forging. Characterisation with the aid of X-ray and electron back scattered diffraction reveal a strong basal texture in B free alloy which gets randomised with the 0.09B addition in the forged condition. Marginal enhancement in tensile and fatigue properties upon forging is noted. B free wrought Ti-6Al-4V alloy exhibits better tensile strength as compared to B containing alloy, due to the operation of < c+a > slip on pyramidal planes with high value of CRSS as compared to < a > slip on basal and prismatic planes. Decrease in fatigue strength of Ti-6Al-4V-0.04B in as-cast and the wrought state is observed due to increase in the volume fraction of grain boundary a phase with B addition, which acts as a crack nucleation site. No significant effect of TiB particles on tensile and fatigue properties is observed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new family of ricinoleic acid based polyesters was synthesized using catalyst free melt-condensation polymerization with sebacic acid, citric acid, mannitol and ricinoleic acid as precursors. The use of FT-IR and NMR characterisation techniques confirms the presence of ester linkages in the as-synthesized polymers. Depending on the precursor combination, their relative amount and the degree of curing, a broad range of elastic modulus (22-327 MPa) and tensile strength (0.7-12.7 MPa) can be obtained in the newly synthesized biopolymers. The polymers show rubbery behaviour at a physiological temperature (37 degrees C) and the contact angles of the synthesized polymers fall in the range of 42 degrees to 71 degrees, making them ideal substrates to study delivery of drugs through polymer scaffolds. The cytocompatibility assessment of the cured polymers confirmed good cell attachment and growth of smooth muscle cells (C2C12 myoblast cells). Importantly, oriented cell growth was observed after culturing myoblast cells for 3 days. The in vitro degradation in PBS indicates that the mild cured polymers follow a first order reaction kinetics and have degradation rate constants in the range of 0.009-0.038 h(-1), depending on the relative proportions of monomers. Overall, the results of our study indicate that the physical properties can be tailored by varying the composition of the monomers and curing conditions in the newly developed polyesters. Hence, they may be used as potential substrates for tissue engineering scaffolds and for localized drug delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tensile behavior of a high activity stand-alone Pt-aluminide (PtAl) bond coat was evaluated by the micro-tensile test method at various temperatures (room temperature to 1100 degrees C) and strain rates (10(-5) s(-1)-10(-1) s(-1).) At all strain rates, the stress strain behavior of the stand-alone coating was significantly affected by the variation in temperature. The stress strain response was linear, indicating brittle behavior, at temperatures below the brittle ductile transition temperature (BDTT). The coating exhibited appreciable ductility (up to 2%) above the BDTT. The strength (both yield stress and ultimate tensile strength) of the coating decreased and its ductility increased with increasing temperature above the BDTT. The tensile behavior of the coating was sensitive to strain rate in the ductile regime, with its strength increasing with increasing strain rate at any given temperature. The BDTT of the coating was found to increase with increasing with increasing strain rate. The coating exhibited two distinct mechanisms of deformation above the BDTT. The transition temperature for the change of deformation mechanism also increased with increasing strain rate. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study tensile properties of consolidated magnesium chips obtained from solid state re-cycling (SSR) has been examined and correlated with the microstructure. Chips machined from as-cast billet of pure magnesium were consolidated through SSR technique, comprising of compaction at ambient conditions followed by hot extrusion at four different temperatures viz., 250, 300, 350 and 400 degrees C. The extruded rods were characterized for microstructure and their room temperature tensile properties. Both ultimate tensile strength and 0.2% proof stress of these consolidated materials are higher by 15-35% compared to reference material (as cast and extruded). Further these materials obey Hall-Petch relation with respect to strength dependence of grain size. Strain hardening behavior, measured in terms of hardening exponent, hardening capacity and hardening rate was found to be distinctly different in chip consolidated material compared to reference material. Strength asymmetry, measured as a ratio of compressive proof stress to tensile proof stress was higher in chip consolidated material. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coat, when subjected to tensile testing at high temperatures (T >= 900 degrees C), exhibits significant decrease in strength and increase in ductility during deformation at strains exceeding that corresponding to the ultimate tensile strength (UTS), i.e., in the post-UTS regime. The stress-strain curve is also marked by serrations in this regime. Electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM) studies suggest dynamic recovery and recrystallization (DRR) as the mechanisms for the observed tensile behavior in the coating. Activation energy values suggest vacancy diffusion assists DRR. The fine recrystallized grains formed after deformation had a strong < 110 > texture. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Developments of aluminum alloys that can retain strength at and above 250 degrees C present a significant challenge. In this paper we report an ultrafine scale Al-Fe-Ni eutectic alloy with less than 3.5 aa transition metals that exhibits room temperature ultimate tensile strength of similar to 400 MPa with a tensile ductility of 6-8%. The yield stress under compression at 300 degrees C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al-Al3Ni rod eutectic with spacing of similar to 90 nm enveloped by a lamellar eutectic of Al-Al9FeNi (similar to 140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al-Al3Ni eutectic colony indicates accommodation of plasticity in alpha-Al with dislocation accumulation at the alpha-Al/Al3Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanical behaviors of 2124, Al-5Cu, Al-Li and 6061 alloys reinforced by silicon carbide particulates, together with 15%SiCw/6061 alloy, were studied under the quasi-static and impact loading conditions, using the split Hopkinson tension/compression bars and Instron universal testing machine. The effect of strain rate on the ultra tensile strength (UTS), the hardening modulus and the failure strain was investigated. At the same time, the SEM observations of dynamic fracture surfaces of various MMC materials showed some distinguished microstructures and patterns. Some new characteristics of asymmetry of mechanical behaviors of MMCs under tension and compression loading were also presented and explained in details, and they could be considered as marks to indicate, to some degree, the mechanism of controlling damage and failure of MMCs under impact loading. The development of new constitutive laws about MMCs under impact loading should benefit from these experimental results and theoretical analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of thermal exposure on the tensile properties of aluminium borate whisker reinforced 6061 aluminium alloy composite was studied. The interfacial reaction was investigated by TEM and the mechanical properties were studied using tensile tests. The results indicated that the interfacial reaction had an influence on the mechanical properties of the composite, so that the maxima of Young’s modulus and ultimate tensile strength of the composite after exposure at 500?C for 10 h were obtained for the optimum degree of interfacial reaction. The yield strength,however, was not only affected by the interfacial state but also by many other factors.