980 resultados para Spinning Finite Elements
Resumo:
We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.
Resumo:
We introduce a second order in time modified Lagrange--Galerkin (MLG) method for the time dependent incompressible Navier--Stokes equations. The main ingredient of the new method is the scheme proposed to calculate in a more efficient manner the Galerkin projection of the functions transported along the characteristic curves of the transport operator. We present error estimates for velocity and pressure in the framework of mixed finite elements when either the mini-element or the $P2/P1$ Taylor--Hood element are used.
Resumo:
Two mathematical models are used to simulate pollution in the Bay of Santander. The first is the hydrodynamic model that provides the velocity field and height of the water. The second gives the pollutant concentration field as a resultant. Both models are formulated in two-dimensional equations. Linear triangular finite elements are used in the Galerkin procedure for spatial discretization. A finite difference scheme is used for the time integration. At each time step the calculated results of the first model are input to the second model as field data. The efficiency and accuracy of the models are tested by their application to a simple illustrative example. Finally a case study in simulation of pollution evolution in the Bay of Santander is presented
Resumo:
Civil buildings are not specifically designed to support blast loads, but it is important to take into account these potential scenarios because of their catastrophic effects, on persons and structures. A practical way to consider explosions on reinforced concrete structures is necessary. With this objective we propose a methodology to evaluate blast loads on large concrete buildings, using LS-DYNA code for calculation, with Lagrangian finite elements and explicit time integration. The methodology has three steps. First, individual structural elements of the building like columns and slabs are studied, using continuum 3D elements models subjected to blast loads. In these models reinforced concrete is represented with high precision, using advanced material models such as CSCM_CONCRETE model, and segregated rebars constrained within the continuum mesh. Regrettably this approach cannot be used for large structures because of its excessive computational cost. Second, models based on structural elements are developed, using shells and beam elements. In these models concrete is represented using CONCRETE_EC2 model and segregated rebars with offset formulation, being calibrated with continuum elements models from step one to obtain the same structural response: displacement, velocity, acceleration, damage and erosion. Third, models basedon structural elements are used to develop large models of complete buildings. They are used to study the global response of buildings subjected to blast loads and progressive collapse. This article carries out different techniques needed to calibrate properly the models based on structural elements, using shells and beam elements, in order to provide results of sufficient accuracy that can be used with moderate computational cost.
Resumo:
Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.
Resumo:
The marsh porosity method, a type of thin slot wetting and drying algorithm in a two-dimensional finite element long wave hydrodynamic model, is discussed and analyzed to assess model performance. Tests, including comparisons to simple examples and theoretical calculations, examine the effects of varying the marsh porosity parameters. The findings demonstrate that the wetting and drying concept of marsh porosity, often used in finite element hydrodynamic modeling, can behave in a more complex manner than initially expected.
Resumo:
Solutions employing perturbation stiffness or viscous hourglass control with one-point quadrature finite elements often exhibit spurious modes in the intermediate frequency range. These spurious frequencies are demonstrated in several examples and their origin is explained. Then it is shown that by critically damping the hourglass modes, these spurious mid-range frequency modes can be suppressed. Estimates of the hourglass frequency and damping coefficients are provided for the plane 4-node quadrilateral and a 4-node shell element. Results are presented that show almost complete annihilation of spurious intermediate frequency modes for both linear and non-linear problems. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The use of the Design by Analysis (DBA) route is a modern trend in pressure vessel and piping international codes in mechanical engineering. However, to apply the DBA to structures under variable mechanical and thermal loads, it is necessary to assure that the plastic collapse modes, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. The tool available to achieve this target is the shakedown theory. Unfortunately, the practical numerical applications of the shakedown theory result in very large nonlinear optimization problems with nonlinear constraints. Precise, robust and efficient algorithms and finite elements to solve this problem in finite dimension has been a more recent achievements. However, to solve real problems in an industrial level, it is necessary also to consider more realistic material properties as well as to accomplish 3D analysis. Limited kinematic hardening, is a typical property of the usual steels and it should be considered in realistic applications. In this paper, a new finite element with internal thermodynamical variables to model kinematic hardening materials is developed and tested. This element is a mixed ten nodes tetrahedron and through an appropriate change of variables is possible to embed it in a shakedown analysis software developed by Zouain and co-workers for elastic ideally-plastic materials, and then use it to perform 3D shakedown analysis in cases with limited kinematic hardening materials
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
We develop an algorithm and computational implementation for simulation of problems that combine Cahn–Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo- mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is pro- posed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of Electronic supplementary material The online version of this article (doi:10.1007/s00466-015-1235-1) contains supplementary material, which is available to authorized users. B P. Areias pmaa@uevora.pt 1 Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal 2 ICIST, Lisbon, Portugal 3 School of Engineering, Universidad de Cuenca, Av. 12 de Abril s/n. 01-01-168, Cuenca, Ecuador 4 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany strain in concentration, and (iv) lithiation. We analyze con- vergence with respect to spatial and time discretization and found that very good results are achievable using both a stag- gered scheme and approximated strain interpolation.
Resumo:
This paper presents a formulation to deal with dynamic thermomechanical problems by the finite element method. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions, not displacements, to solve the mechanical problem. The thermal problem is solved by a regular finite element method. Such formulation has the advantage of being simple and accurate. As a solution strategy, it has been used as a natural split of the thermomechanical problem, usually called isothermal split or isothermal staggered algorithm. Usual internal variables and the additive decomposition of the strain tensor have been adopted to model the plastic behavior. Four examples are presented to show the applicability of the technique. The results are compared with other authors` numerical solutions and experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fatigue and crack propagation are phenomena affected by high uncertainties, where deterministic methods fail to predict accurately the structural life. The present work aims at coupling reliability analysis with boundary element method. The latter has been recognized as an accurate and efficient numerical technique to deal with mixed mode propagation, which is very interesting for reliability analysis. The coupled procedure allows us to consider uncertainties during the crack growth process. In addition, it computes the probability of fatigue failure for complex structural geometry and loading. Two coupling procedures are considered: direct coupling of reliability and mechanical solvers and indirect coupling by the response surface method. Numerical applications show the performance of the proposed models in lifetime assessment under uncertainties, where the direct method has shown faster convergence than response surface method. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved