481 resultados para Spinning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(1)H HR-MAS NMR spectroscopy was applied to apple tissue samples deriving from 3 different cultivars. The NMR data were statistically evaluated by analysis of variance (ANOVA), principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA). The intra-apple variability of the compounds was found to be significantly lower than the inter-apple variability within one cultivar. A clear separation of the three different apple cultivars could be obtained by multivariate analysis. Direct comparison of the NMR spectra obtained from apple tissue (with HR-MAS) and juice (with liquid-state HR NMR) showed distinct differences in some metabolites, which are probably due to changes induced by juice preparation. This preliminary study demonstrates the feasibility of (1)H HR-MAS NMR in combination with multivariate analysis as a tool for future chemometric studies applied to intact fruit tissues, e.g. for investigating compositional changes due to physiological disorders, specific growth or storage conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than twelve years ago, during the car rides to school, my paternal grandmother, or Obasan as she is known in our family, first began telling me her stories about living in the Philippines during the Japanese Occupation. At the time, I did not know much about World War II, but her stories about being captured by the Japanese soldiersfascinated me. Years have passed, and only recently did I really begin to grasp not only the poignancy of these accounts, but also their importance in a larger context. The absence of first-hand narratives about World War II and the Japanese Occupation of the Philippines from the point of view of a Filipino woman is problematic, and I hope that my grandmother’s story can fill this hole in war literature. There are two main parts to the narrative. The first eight chapters of my thesis are about the early years of the Japanese Occupation. During this time, Obasan and her familylived a relatively peaceful life, with the exception of a few troubling encounters with the Japanese. The last seven chapters recount the Liberation of the Philippines and the days when Obasan and her family were held captive by the Japanese. The primary sources for this thesis are the interviews I have conducted with my grandmother over the course of this year and her own handwritten memoir that she composed in the last two decades. I focus specifically on the three chapters that she wrote about the war. I have also included poems written by women and historical background on the Philippines and World War II. Spinning Song is what I call a hybrid-memoir, as it retells Obasan’s stories about the war and explores the ways in which our experiences as grandmother and granddaughter intersect. More importantly, it is my way of preserving the legacy of my grandmother and paying tribute to the woman who has shaped much of who I am today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal stability of nanograined metals can be difficult to attain due to the large driving force for grain growth that arises from the significant boundary area constituted by the nanostructure. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 at.% Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. After using melt-spinning and ball-milling to create an extended solid-solution and nanostructure with average grain size on the order of 30-45 nm, 1 h annealing treatments at 673 K (0.72 Tm) , 773 K (0.83 Tm) , and 873 K (0.94 Tm) were applied. The alloys remain nanocrystalline (<100 nm) as measured by Warren-Averbach Fourier analysis of x-ray diffraction peaks and direct observation of TEM dark field micrographs, with the efficacy of stabilization: Sr>Yb>Sc. Disappearance of intermetallic phases in the Sr and Yb alloys in the x-ray diffraction spectra are observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute. Melt-spinning has also been shown to be an effective process to produce a class of ordered, but non-periodic crystals called quasicrystals. However, many of the factors related to the creation of the quasicrystals through melt-spinning are not optimized for specific chemistries and alloy systems. In a related but separate aspect of this research, meltspinning was utilized to create metastable quasicrystalline Al6Mn in an α-Al matrix through rapid solidification of Al-8Mn (by mol) and Al-10Mn (by mol) alloys. Wheel speed of the melt-spinning wheel and orifice diameter of the tube reservoir were varied to determine their effect on the resulting volume proportions of the resultant phases using integrated areas of collected x-ray diffraction spectra. The data were then used to extrapolate parameters for the Al-10Mn alloy which consistently produced Al6Mn quasicrystal with almost complete suppression of the equilibrium Al6Mn orthorhombic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NAFLD (non-alcoholic fatty liver disease) and NASH (non-alcoholic steatohepatitis) are of increasing importance, both in connection with insulin resistance and with the development of liver cirrhosis. Histological samples are still the 'gold standard' for diagnosis; however, because of the risks of a liver biopsy, non-invasive methods are needed. MAS (magic angle spinning) is a special type of NMR which allows characterization of intact excised tissue without need for additional extraction steps. Because clinical MRI (magnetic resonance imaging) and MRS (magnetic resonance spectroscopy) are based on the same physical principle as NMR, translational research is feasible from excised tissue to non-invasive examinations in humans. In the present issue of Clinical Science, Cobbold and co-workers report a study in three animal strains suffering from different degrees of NAFLD showing that MAS results are able to distinguish controls, fatty infiltration and steatohepatitis in cohorts. In vivo MRS methods in humans are not obtainable at the same spectral resolution; however, know-how from MAS studies may help to identify characteristic changes in crowded regions of the magnetic resonance spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solutions in AdS m × S n backgrounds of type II/M-theory. We finally show, via a double scaling extremal limit, that our spinning thermal giant graviton solutions lead to a novel null-wave zero-temperature giant graviton solution with a BPS spectrum, which does not have an analogue in terms of the conventional weakly coupled world volume theory.