968 resultados para Spin angular momentum
Resumo:
In dieser Arbeit wird zum Erreichen hoher Kernspinpolarisationen die Methode des metastabilen optischen Pumpens benutzt. Das Verfahren beruht auf dem "Ubertrag des Drehimpulses absorbierter Photonen auf das hierbei angeregte Valenzelektron, welches durch Hyperfeinkopplung den Drehimpuls weiter auf den $^3$He-Kern transferiert. Da der Polarisationsprozess nur bei Dr"ucken von ca. 1~mbar effizient funktioniert, f"ur die meisten Anwendungen aber polarisiertes $^3$He bei einem Druck von $geq 1$~bar ben"otigt wird, muss das Gas nach der Aufpolarisation komprimiert werden. In unserer Arbeitsgruppe steht eine Maschine ("`Polarisator"') zur Verf"ugung, die das Gas polarisiert und anschlie"send komprimiert. Ziel dieser Dissertation ist, einerseits die Leistungsf"ahigkeit des Polarisators bez"uglich Maximalpolarisation und Gasfluss zu verbessern und andererseits den metastabilen Pumpprozess selbst genauer zu untersuchen.\ noindent Durch die Verwendung neuer Laser auf Basis der Fasertechnologie sowie einer systematischen Optimierung der optischen Komponenten konnten in abgeschlossenen Pumpzellen Rekord-Polarisationsgrade von $91pm 2$% erzielt werden.\ noindent Mit der Implementierung neuartiger Optiken und Laser am Mainzer Polarisator konnte die Leistungscharakteristik entscheidend verbessert werden. So wurde die erreichbare Polarisation bei identischer Produktionsrate um 20 Prozentpunkte gesteigert. Zurzeit sind maximale Polarisationsgrade von mehr als 75% im optischen Pumpvolumen erreichbar. Eine am Mainzer Triga-Reaktor durchgef"uhrte Polarisationsbestimmung ergab einen Wert von $72.7pm 0.7$%. Dies veranschaulicht die geringen Polarisationsverluste infolge der Gaskompression, des Transports und einer Lagerung "uber mehrere Stunden.\ noindent Zur Dynamik der geschwindigkeitsver"andernden St"o"se sowie zur Bestimmung der mittleren Photonen-Absorptionsrate wurde ein Modell entwickelt, welches auch experimentell best"atigt wurde. Damit konnte erstmalig das gemessene Absorptionsverhalten einer spektral schmalbandigen Laserdiode korrekt beschrieben werden.\ noindent Zudem stimmen die an so genannten abgeschlossenen Pumpzellen gemessenen extrem hohen Polarisationswerte mit theoretischen Vorhersagen "uberein, sofern der Druck im optischen Pumpvolumen geringer als 1~mbar ist und das $^3$He nicht durch Fremdgase verunreinigt ist. Bei derartigen Pumpzellen ist die gemessene Abh"angigkeit der Polarisation von Laserleistung, Metastabilendichte und falscher Zirkularkomponente mit der Theorie kompatibel.\
Resumo:
The non-relativistic hydrogen atom enjoys an accidental SO(4) symmetry, that enlarges the rotational SO(3) symmetry, by extending the angular momentum algebra with the Runge–Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson–Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius R with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter γ, in general the accidental SO(4) symmetry is lifted. However, for R=(l+1)(l+2)a (where a is the Bohr radius and l is the orbital angular momentum) some degeneracy remains when γ=∞ or γ = 2/R. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of R and γ.
Resumo:
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.
Resumo:
The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Although the transition metal chemistry of many dialkylamido ligands has been well studied, the chemistry of the bulky di(tert-butyl)amido ligand has been largely overlooked. The di(tert-butyl)amido ligand is well suited for synthesizing transition metal compounds with low coordination numbers; such compounds may exhibit interesting structural, physical, and chemical properties. Di(tert-butyl)amido complexes of transition metals are expected to exhibit high volatilities and low decomposition temperatures, thus making them well suited for the chemical vapor deposition of metals and metal nitrides. Treatment of MnBr₂(THF)₂, FeI₂, CoBr₂(DME), or NiBr₂(DME) with two equivalents of LiN(t-Bu)2 in benzene affords the two-coordinate complex M[N(t-Bu)₂]₂, where M is Mn, Fe, Co, or Ni. Crystallographic studies show that the M-N distances decrease across the series: 1.9365 (Mn), 1.8790 (Fe), 1.845 (Co), 1.798 Å (Ni). The N-M- N angles are very close to linear for Mn and Fe (179.30 and 179.45°, respectively), but bent for Co and Ni (159.2 and 160.90°, respectively). As expected, the d⁵ Mn complex has a magnetic moment of 5.53 μΒ that is very close to the spin only value. The EPR spectrum is nearly axial with a low E/D ratio of 0.014. The d⁶ Fe compound has a room temperature magnetic moment of 5.55 μΒ indicative of a large orbital angular momentum contribution. It does not exhibit a Jahn-Teller distortion despite the expected doubly degenerate ground state. Applied field Mössbauer spectroscopy shows that the effective internal hyperfine field is unusually large, Hint = 105 T. The magnetic moments of Co[N(t-Bu)₂]₂ and Ni[N(t-Bu)₂]₂ are 5.24 and 3.02 μΒ respectively. Both are EPR silent at 4.2 K. Treatment of TiCl₄ with three equivalents of LiN(t-Bu)2 in pentane affords the briding imido compound Ti₂[μ-N(t-Bu)]₂Cl₂[N(t-Bu)₂]₂ via a dealkylation reaction. Rotation around the bis(tert-butyl)amido groups is hindered, with activation parameters of ΔH‡ = 12.8 ± 0.6 kcal mol-1 and ΔS‡ = -8 ± 2 cal K-1 ·mol-1, as evidenced by variable temperature 1H NMR spectroscopy. Treatment of TiCl₄ with two equivalents of HN(t-Bu)₂ affords Ti₂Cl₆[N(t-Bu)₂]₂. This complex shows a close-contact of 2.634(3) Å between Ti and the carbon atom of one of the CH₃ substituents on the tert-butyl groups. Theoretical considerations and detailed structural comparisons suggest this interaction is not agostic in nature, but rather is a consequence of interligand repulsions. Treatment of NiI₂(PPh3)₂ and PdCl₂(PPh₃)₂ with LiN(t-Bu)₂in benzene affords Ni[N(t-Bu)₂](PPh₃)I and Pd₃(μ₂-NBut₂)2(μ₂-PPh₂)Ph(PPh₃) respectively. The compound Ni[N(t-Bu)₂](PPh₃)I has distorted T-shape in geometry, whereas Pd₃(μ₂-NBut₂)₂(μ₂-PPh₂)Ph(PPh₃) contains a triangular palladium core. Manganese nitride films were grown from Mn[N(t-Bu)₂]₂ in the presence of anhydrous ammonia. The growth rate was several nanometers per minute even at the remarkably low temperature of 80⁰C. As grown, the films are carbon- and oxygen-free, and have a columnar morphology. The spacings between the columns become smaller and the films become smoother as the growth temperature is increased. The composition of the films is consistent with a stoichiometry of Mn₅N₂.
Resumo:
Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems based on a Hamiltonian formalism. In absence of dissipation, the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black hole binaries at the end of the inspiral phase.
Resumo:
Using series solutions and time-domain evolutions, we probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds. These results are particularly relevant for the AdS/CFT correspondence, since the eikonal regime is characterized by the existence of long-lived modes which (presumably) dominate the decay time scale of the perturbations. We confirm all the main qualitative features of these slowly damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv:0811.1033.] for the scalar-field (tensor-type gravitational) fluctuations. However, quantitatively we find dimensional-dependent correction factors. We also investigate the dependence of the quasinormal mode frequencies on the horizon radius of the black hole (brane) and the angular momentum (wave number) of vector- and scalar-type gravitational perturbations.
Resumo:
This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark beta algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples. Copyright (C) 2009 H. B. Coda and R. R. Paccola.
Resumo:
The recent interferometric study of Achernar, leading to the conclusion that its geometrical oblateness cannot be explained by the Roche approximation, has stirred substantial interest in the community, in view of its potential impact on many fields of stellar astrophysics. It is the purpose of this Letter to reinterpret the interferometric observations with a fast-rotating, gravity-darkened central star surrounded by a small equatorial disk, whose presence is consistent with contemporaneous spectroscopic data. We find that we can fit the available data only assuming a critically rotating central star. We identified two different disk models that simultaneously fit the spectroscopic, polarimetric, and interferometric observational constraints: a tenuous disk in hydrostatic equilibrium (i.e., with small scale height) and a smaller, scale height enhanced disk. We believe that these relatively small disks correspond to the transition region between the photosphere and the circumstellar environment and that they are probably perturbed by some photospheric mechanism. The study of this interface between photosphere and circumstellar disk for near-critical rotators is crucial to our understanding of the Be phenomenon and the mass and angular momentum loss of stars in general. This work shows that it is nowadays possible to directly study this transition region from simultaneous multitechnique observations.
Resumo:
Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields similar to mu G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) similar to 10 mu G over a comoving similar to 1 pc region are predicted at redshift z similar to 10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs similar to 10(-2) mu G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z similar to 10. In the collapse to a galaxy (comoving size similar to 30 kpc) at z similar to 10, the fields are amplified to similar to 10 mu G. This indicates that the MFs created immediately after the QHPT (10(-4) s), predicted by the fluctuation-dissipation theorem, could be the origin of the similar to mu G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.
Resumo:
It is shown that, for accretion disks, the height scale is a constant whenever hydrostatic equilibrium and the subsonic turbulence regime hold in the disk. In order to have a variable height scale, processes are needed that contribute an extra term to the continuity equation. This contribution makes the viscosity parameter much greater in the outer region and much smaller in the inner region. Under these circumstances, turbulence is the presumable source of viscosity in the disk.
Resumo:
We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si lambda lambda 4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of nu(rot) similar or equal to 150 +/- 20 km s(-1) is needed (assuming an inclination angle of 30 degrees), implying that HR Car rotates at similar or equal to 0.88 +/- 0.2 of its critical velocity for breakup (nu(crit)). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the ""LBV minimum instability strip""). We suggest this region corresponds to where nu(crit) is reached. To the left of this strip, a forbidden zone with nu(rot)/nu(crit) > 1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low nu(rot), we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.
Resumo:
Context. Previous analyses of lithium abundances in main sequence and red giant stars have revealed the action of mixing mechanisms other than convection in stellar interiors. Beryllium abundances in stars with Li abundance determinations can offer valuable complementary information on the nature of these mechanisms. Aims. Our aim is to derive Be abundances along the whole evolutionary sequence of an open cluster. We focus on the well-studied open cluster IC 4651. These Be abundances are used with previously determined Li abundances, in the same sample stars, to investigate the mixing mechanisms in a range of stellar masses and evolutionary stages. Methods. Atmospheric parameters were adopted from a previous abundance analysis by the same authors. New Be abundances have been determined from high-resolution, high signal-to-noise UVES spectra using spectrum synthesis and model atmospheres. The careful synthetic modeling of the Be lines region is used to calculate reliable abundances in rapidly rotating stars. The observed behavior of Be and Li is compared to theoretical predictions from stellar models including rotation-induced mixing, internal gravity waves, atomic diffusion, and thermohaline mixing. Results. Beryllium is detected in all the main sequence and turn-off sample stars, both slow- and fast-rotating stars, including the Li-dip stars, but is not detected in the red giants. Confirming previous results, we find that the Li dip is also a Be dip, although the depletion of Be is more modest than for Li in the corresponding effective temperature range. For post-main-sequence stars, the Be dilution starts earlier within the Hertzsprung gap than expected from classical predictions, as does the Li dilution. A clear dispersion in the Be abundances is also observed. Theoretical stellar models including the hydrodynamical transport processes mentioned above are able to reproduce all the observed features well. These results show a good theoretical understanding of the Li and Be behavior along the color-magnitude diagram of this intermediate-age cluster for stars more massive than 1.2 M(circle dot).
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.