823 resultados para Spiking Neural Network
Resumo:
Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.
Resumo:
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Resumo:
A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.
Resumo:
A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.
Resumo:
Based on the idea of an important cluster, a new multi-level probabilistic neural network (MLPNN) is introduced. The MLPNN uses an incremental constructive approach, i.e. it grows level by level. The construction algorithm of the MLPNN is proposed such that the classification accuracy monotonically increases to ensure that the classification accuracy of the MLPNN is higher than or equal to that of the traditional PNN. Numerical examples are included to demonstrate the effectiveness of proposed new approach.