999 resultados para Spent Nuclear Fuel


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report summarizes the work done by a consortium consisting of Lappeenranta University of Technology, Aalto University and VTT Technical Research Centre of Finland in the New Type Nuclear Reactors (NETNUC) project during 2008–2011. The project was part of the Sustainable Energy (SusEn) research programme of the Academy of Finland. A wide range of generation IV nuclear technologies were studied during the project and the research consisted of multiple tasks. This report contains short articles summarizing the results of the individual tasks. In addition, the publications produced and the persons involved in the project are listed in the appendices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the 1980s, leukaemia clusters were discovered around nuclear fuel reprocessing plants in Sellafield and Dounreay in the United Kingdom. This raised public concern about the risk of childhood leukaemia near nuclear power plants (NPPs). Since then, the topic has been well-studied, but methodological limitations make results difficult to interpret. Our review aims to: (1.) summarise current evidence on the relationship between NPPs and risk of childhood leukaemia, with a focus on the Swiss CANUPIS (Childhood cancer and nuclear power plants in Switzerland) study; (2.) discuss the limitations of previous research; and (3.) suggest directions for future research. There are various reasons that previous studies produced inconclusive results. These include: inadequate study designs and limited statistical power due to the low prevalence of exposure (living near a NPP) and outcome (leukaemia); lack of accurate exposure estimates; limited knowledge of the aetiology of childhood leukaemia, particularly of vulnerable time windows and latent periods; use of residential location at time of diagnosis only and lack of data on address histories; and inability to adjust for potential confounders. We conclude that risk of childhood leukaemia around NPPs should continue to be monitored and that study designs should be improved and standardised. Data should be pooled internationally to increase the statistical power. More research needs to be done on other putative risk factors for childhood cancer such as low-dose ionizing radiation, exposure to certain chemicals and exposure to infections. Studies should be designed to allow examining multiple exposures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this course, conducted by Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE) is to pass on basic knowledge about Science and Nuclear Technology to the general public, mostly students and introduce them to its most relevant points. The purposes of this course are to provide general information, to answer the most common questions about Nuclear Energy and to motivate the young students to start a career in nuclear. Therefore, it is directed mainly to high school and university students, but also to general people that wants to learn about the key issues of such an important matter in our society. Anybody could attend the course, as no specific scientific education is required. The course is done at least once a year, during the Annual Meeting of the Spanish Nuclear Society, which takes place in a different Spanish city each time. The course is done also to whichever university or institution that asks for it to JJNN, with the only limit of the presenter´s availability. The course is divided into the following chapters: Physical nuclear and radiation principles, Nuclear power plants, Nuclear safety, Nuclear fuel, Radioactive waste, Decommission of nuclear facilities, Future nuclear power plants, Other uses of nuclear technology, Nuclear energy, climate change and sustainable development. The course is divided into 15 minutes lessons on the above topics, imparted by young professionals, experts in the field that belongs either to the Spanish Young Generation in Nuclear, either to companies and institutions related with nuclear energy. At the end of the course, a 200 pages book with the contents of the course is handed to every member of the audience. This book is also distributed in other course editions at high schools and universities in order to promote the scientific dissemination of the Nuclear Technology. As an extra motivation, JJNN delivers a course certificate to the assistants. At the end of the last edition course, in Santiago de Compostela, the assistants were asked to provide a feedback about it. Some really interesting lessons were learned, that will be very useful to improve next editions of the course. As a general conclusion of the courses it can be said that many of the students that have assisted to the course have increased their motivation in the nuclear field, and hopefully it will help the young talents to choose the nuclear field to develop their careers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las cuestiones relacionadas con el transporte de residuos radiactivos de alta actividad (RAA) al previsto almacén temporal centralizado (ATC) en Villar de Cañas (Cuenca) están de actualidad, debido a la movilidad que se espera en un futuro próximo, el compromiso con el medio ambiente, la protección de las personas, así, como la normativa legal reguladora. En esta tesis se ha evaluado el impacto radiológico asociado a este tipo de transportes mediante una nueva herramienta de procesamiento de datos, que puede ser de utilidad y servir como documentación complementaria a la recogida en el marco legal del transporte. Además puede facilitar el análisis desde una perspectiva más científica, para investigadores, responsables públicos y técnicos en general, que pueden utilizar dicha herramienta para simular distintos escenarios de transportes radiactivos basados únicamente en datos de los materiales de entrada y las rutas elegidas. Así, conociendo el nivel de radiación a un metro del transporte y eligiendo una ruta, obtendremos los impactos asociados, tales como las poblaciones afectadas, la dosis recibida por la persona más expuesta, el impacto radiológico global, las dosis a la población en el trayecto y el posible detrimento de su salud. En España se prevé una larga “ruta radiactiva” de más de 2.000 kilómetros, por la que el combustible nuclear gastado se transportará presumiblemente por carretera desde las centrales nucleares hasta el ATC, así como los residuos vitrificados procedentes del reprocesado del combustible de la central nuclear Vandellos I, que en la actualidad están en Francia. Como conclusión más importante, se observa que la emisión de radiaciones ionizantes procedentes del transporte de residuos radiactivos de alta actividad en España, en operación normal, no es significativa a la hora de generar efectos adversos en la salud humana y su impacto radiológico puede considerarse despreciable. En caso de accidente, aunque la posibilidad del suceso es remota, las emisiones, no serán determinantes a la hora de generar efectos adversos en la salud humana. Issues related to the transport of high level radioactive wastes (HLW) to the new centralised temporary storage facility to be built in Villar de Cañas (Cuenca) are attracting renewed attention due to the mobility expected in the near future for these materials, the commitment to the environment, the protection of persons and the legal regulatory standards. This study assesses the radiological impacts associated with this type of transport by means of a new dataprocessing tool, which may be of use and serve as documentation complementary to that included in the legal framework covering transport. Furthermore, it may facilitate analysis from a more scientific perspective for researchers, public servants and technicians in general, who may use the tool to simulate different radioactive transport scenarios based only on input materials data and the routes selected. Thus, by knowing the radiation level at a distance of one metre from the transport and selecting a route, it is possible to obtain the associated impacts, such as the affected populations, the dose received by the most exposed individual, the overall radiological impact and the doses to the public en route and the possible detriment to their health. In Spain a long “radioactive route” of more than 2,000 kilometres is expected, along which spent nuclear fuels will be transported – foreseeably by road – from the nuclear power plants to the CTS facility. The route will also be used for the vitrified wastes from fuel reprocessing of the fuel from Vandellós I nuclear power plant, which are currently in France. In conclusion, it may be observed that the emission of ionising radiations from transport of high level radioactive wastes in Spain is insignificant, in normal operations, as regards the generation of adverse effects for human health, and that the radiological impact may be considered negligible. In the event of an accident, the possibility of which is remote, the emissions will not be also a very determining factor as regards adverse effects for human health.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The method reported in the literature to calculate the stress–strain curve of nuclear fuel cladding from ring tensile test is revisited in this paper and a new alternative is presented. In the former method, two universal curves are introduced under the assumption of small strain. In this paper it is shown that these curves are not universal, but material-dependent if geometric nonlinearity is taken into account. The new method is valid beyond small strains, takes geometric nonlinearity into consideration and does not need universal curves. The stress–strain curves in the hoop direction are determined by combining numerical calculations with experimental results in a convergent loop. To this end, ring tensile tests were performed in unirradiated hydrogen-charged samples. The agreement among the simulations and the experimental results is excellent for the range of concentrations tested (up to 2000 wppm hydrogen). The calculated stress–strain curves show that the mechanical properties do not depend strongly on the hydrogen concentration, and that no noticeable strain hardening occurs. However, ductility decreases with the hydrogen concentration, especially beyond 500 wppm hydrogen. The fractographic results indicate that as-received samples fail in a ductile fashion, whereas quasicleavage is bserved in the hydrogen-charged samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En claro alineamiento con estrategias de sostenibilidad en el uso de recursos naturales en un escenario constante de aumento de la demanda energética mundial, el desarrollo de la tecnología energética en la Historia de la Especie Humana muestra un vector de evolución permanente desde su origen en el sentido del desarrollo y uso de nuevas fuentes energéticas con la explotación de recursos naturales de manera más eficiente: soluciones energéticas con aumento de la densidad energética (exoenergía de proceso por unidad de masa de recurso natural). Así el cambio de escala en la demanda de explotación del Litio como recurso natural se viene presentando en la última década ligada al desarrollo del mercado de las baterías "ion-Litio" y los requisitos de combustible (Deuterio y Litio) en el camino de la fusión nuclear como opción energética próxima. El análisis anticipado de las demandas sinérgicas a escala de ambos mercados aparece de enorme interés prospectivo en sus aspectos técnicos: (1) tecnologías de base para la extracción mineral y de agua marina y (2) su enriquecimiento isotópico (de interés sinérgico; 7Li para baterías eficientes ion-litio; 6Li como regenerador de tritio en ciclo de combustible en fusión nuclear) a la vez que en sus aspectos económicos. Este Proyecto realiza: (1) un ejercicio de análisis prospectivo de la demanda y de mercado para el enriquecimiento 6Li/7Li para las próximas décadas, (2) se califican los desarrollos tecnológicos específicos que van a poder permitir la producción a escala conforme a la demanda; (3) se selecciona y califica una técnica [de centrifugación / termo-difusión/ destilación combinada] como opción tecnológicamente viable para la producción a escala de formas litiadas; (4) se propone un diseño conceptual de planta de producción y finalmente (5) propone un estudio de viabilidad para la demostración de proceso y construcción de dicha planta de demostración de la nueva capacidad tecnológica. ABSTRACT Clearly aligned with sustainability strategies under growing world energy demand in the use of natural resources the development of energy technology in the history of the human species shows a vector of ongoing evolution from its origin in the sense of the development and use of new energy sources with the exploitation of natural resources in a more efficient manner. The change of scale in the demand for exploitation of Lithium as a natural resource appears during the last decade as bound to the deployment of "lithium-ion" batteries market and to the Nuclear Fusion fuels (deuterium and lithium) supply scaled demands. The prospective analysis of demands to scale in both markets appears in scene with huge prospective interest in its technical aspects: (1) base technologies for mineral and water marine extraction (2) its isotopic enrichment (synergistic interests; 7Li efficient battery Li-ion; 6Li as fusion nuclear fuel breeder (tritium) as well as in its economic aspects. This Project: (1) propose a prospective analysis exercise of the synergistic supply demand for coming decades for the enrichment of 6Li and 7Li, (2) qualifies specific technological developments ongoing to respond to supply demand; (3) select and qualifies an appropriate technique [combined centrifugation/thermo-diffusion/distillation] as technologically viable option for lithiated forms scaled-production; (4) proposes a conceptual design of production plant based on the technique and finally (5) proposes a feasibility study for the process demonstration and construction of this new technological capability Demonstration Plant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed. Calculations are performed with the Monte Carlo transport-coupled depletion code SERPENT together with post-processing tools.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During Russian PM Dmitry Medvedev’s working visit to Minsk on 18 July, Russia and Belarus signed a general contract for the construction of a nuclear power plant in Belarus. The signature brought to an end the complex negotiations which had been underway since January 2009 involving the leadership in Minsk, the Russian government and Atomstroyexport, the Russian company that will be the main contractor of the investment. However, the power plant’s future ownership structure, management arrangements and terms and conditions of profit sharing remain unclear. The Belarusian leadership hopes that with the launch of the nuclear power plant, it will be able to reduce gas imports from Russia, gas being the main resource used in producing heat and electricity in Belarus. This should in turn reduce the costs of energy generation. In addition, Minsk expects that the new investment will allow it to export electricity surpluses to the European Union, including Poland. Agreements concerning the power plant have been concluded over the last year or so and, according to these, Russia has acquired partial control of the Belarusian electricity grid, especially with regard to the transmission of energy to foreign markets. Russia is also the sole creditor and contractor for the investment, and the sole future provider of nuclear fuel. Therefore, implementation of the project will exacerbate Minsk’s already significant dependence on Moscow in energy and political terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Reactors - Power (TID-4500, 13th Edition)."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Work conducted at the Metals Research Laboratories, Union Carbide Metals Company, a Division of Union Carbide Corporation, under the United States Atomic Energy Commission contract no. AT-(40-1)-2559.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Contract No. W-7405-eng-92."