173 resultados para Spectrograph.
Resumo:
We report the discovery of WASP-10b, a new transiting extrasolar planet (ESP) discovered by the Wide Angle Search for Planets ( WASP) Consortium and confirmed using Nordic Optical Telescope FIbre-fed Echelle Spectrograph and SOPHIE radial velocity data. A 3.09-d period, 29 mmag transit depth and 2.36 h duration are derived for WASP-10b using WASP and high-precision photometric observations. Simultaneous fitting to the photometric and radial velocity data using a Markov Chain Monte Carlo procedure leads to a planet radius of 1.28R(J), a mass of 2.96M(J) and eccentricity of approximate to 0.06. WASP-10b is one of the more massive transiting ESPs, and we compare its characteristics to the current sample of transiting ESP, where there is currently little information for masses greater than approximate to 2M(J) and non-zero eccentricities. WASP-10's host star, GSC 2752-00114 (USNO-B1.0 1214-0586164) is among the fainter stars in the WASP sample, with V = 12.7 and a spectral type of K5. This result shows promise for future late-type dwarf star surveys.
Resumo:
Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T-e) and density (N-e) emission line ratios involving both the nebular (5517.7, 5537.9 Angstrom) and auroral (8433.9, 8480.9, 8500.0 Angstrom) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R-1 = /(5518 Angstrom)/I(5538 Angstrom) intensity ratio provides estimates of N-e in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R-1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl III] 8433.9 Angstrom line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl III] intensity may be reliably measured, it provides accurate determinations of T-e when ratioed against the sum of the 5518 and 5538 Angstrom line fluxes. Similarly, the 8500.0 Angstrom line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [CI III] transition at 8480.9 Angstrom is found to be blended with the He I 8480.7 Angstrom line, except in planetary nebulae that show a relatively weak He I spectrum, where it also provides reliable estimates of T-e when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl III] lines at 3344 and 3354 Angstrom is briefly discussed.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in Ar IV are used to calculate the emission-line ratio: ratio diagrams (R1, R2), (R1, R3), and (R1, R4), where K1 = I(4711 Å)/I(4740 Å), R2 = I(7238 Å)/I(4711 + 4740 Å), R3 = I(7263 Å)/I(4711 + 4740 Å), and R4 = I(7171 Å)/I(4711 + 4740 Å), for a range of electron temperatures (Te = 5000-20,000 K) and electron densities (Ne = 10-106 cm-3) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of Te and Ne from measurements of the [Ar IV] lines in a spectrum. Plasma parameters deduced for a sample of planetary nebulae from (R1, R3) and (R1, R4), using observational date obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope at the Lick Observatory, are found to show excellent internal consistency and to be in generally good agreement with the values of Te and Ne estimated from other line ratios in the echelle spectra. These results provide observational support for the accuracy of the theoretical ratios and, hence, the atomic data adopted in their derivation. In addition, they imply that the 7171 Å line is not as seriously affected by telluric absorption as previously thought. However, the observed values of R2 are mostly larger than the theoretical high-temperature and density limit, which is due to blending of the Ar IV 7237.54 Å line with the strong C II transition at 7236 Å.
Resumo:
We present near-UV transmission spectroscopy of the highly irradiated transiting exoplanet WASP-12b, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The spectra cover three distinct wavelength ranges: NUVA (2539-2580 Å), NUVB (2655-2696 Å), and NUVC (2770-2811 Å). Three independent methods all reveal enhanced transit depths attributable to absorption by resonance lines of metals in the exosphere of WASP-12b. Light curves of total counts in the NUVA and NUVC wavelength ranges show a detection at a 2.5s level. We detect extra absorption in the Mg II ??2800 resonance line cores at the 2.8s level. The NUVA, NUVB, and NUVC light curves imply effective radii of 2.69 ± 0.24 R J , 2.18 ± 0.18 R J , and 2.66 ± 0.22 R J respectively, suggesting the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We detect enhanced transit depths at the wavelengths of resonance lines of neutral sodium, tin, and manganese, and at singly ionized ytterbium, scandium, manganese, aluminum, vanadium, and magnesium. We also find the statistically expected number of anomalous transit depths at wavelengths not associated with any known resonance line. Our data are limited by photon noise, but taken as a whole the results are strong evidence for an extended absorbing exosphere surrounding the planet. The NUVA data exhibit an early ingress, contrary to model expectations; we speculate this could be due to the presence of a disk of previously stripped material.
Resumo:
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93-m telescope at Haute-Provence Observatory. The shape of the effect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (?) is small and consistent with zero within . WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6+2.2-2.1kms-1) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5kms-1). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7+1.4-1.3kms-1).
Resumo:
Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 MJ). Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle ß between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining ß we attempt to statistically determine the distribution of the real spin-orbit angle ?. Results: We found that three of our targets have ß above 90°: WASP-2b: ß = 153°+11-15, WASP-15b: ß = 139.6°+5.2-4.3 and WASP-17b: ß = 148.5°+5.1-4.2; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848+0.00085-0.00095 in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of ß and our six and transforming them into a distribution of ? we find that between about 45 and 85% of hot Jupiters have ? > 30°. Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process.
Resumo:
Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.
Resumo:
We report the discovery of a new transiting planet in the southern hemisphere. It was found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2 m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope, and the ESO 3.6 m telescope. The orbital period of the planet is 2.94 days. We find that it is a gas giant with a mass of 0.88 ± 0.10 MJ and an estimated radius of 0.96 ± 0.05 RJ. We obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal-to-noise ratio of the effect and a small impact parameter, we cannot place a strong constraint on the projected spin-orbit angle. We find two conflicting values for the stellar rotation. We find, via spectral line broadening, that v sin I = 2.2 ± 0.3 km s-1, while applying another method, based on the activity level using the index log R'_HK, gives an equatorial rotation velocity of only v = 1.35 ± 0.20 km s-1. Using these as priors in our analysis, the planet might be either misaligned or aligned. This result raises doubts about the use of such priors. There is evidence of neither eccentricity nor any radial velocity drift with time. Using WASP-South photometric observations confirmed with LCOGT Faulkes South Telescope, the 60 cm TRAPPIST telescope, the CORALIE spectrograph and the camera from the Swiss 1.2 m Euler Telescope placed at La Silla, Chile, as well as with the HARPS spectrograph, mounted on the ESO 3.6 m, also at La Silla, under proposal 084.C-0185. The data is publicly available at the CDS Strasbourg and on demand to the main author.RV data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A24Appendix is available in electronic form at http://www.aanda.org
Resumo:
We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.48 Jupiter masses and 1.55 Jupiter radii. It is in a 3.4-day orbit around a metal-poor, late-F-type, V = 11.7 dwarf star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass. Based in part on observations made with the HARPS spectrograph on the 3.6-m ESO telescope (proposal 085.C-0393) and with the CORALIE spectrograph and the Euler camera on the 1.2-m Euler Swiss telescope, both at the ESO La Silla Observatory, Chile.The photometric time-series and radial-velocity data used in this work are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A60
Resumo:
We present optical spectra of 403 stars and quasi-stellar objects in order to obtain distance limits towards intermediate- and high-velocity clouds (IHVCs), including new Fibre-fed Extended Range Optical Spectrograph (FEROS) observations plus archival ELODIE, FEROS, High Resolution Echelle Spectrometer (HIRES) and Ultraviolet and Visual Echelle Spectrograph (UVES) data. The non-detection of Ca II K interstellar (IS) absorption at a velocity of −130 to −60 km s−1 towards HDE 248894 (d ∼ 3 kpc) and HDE 256725 (d ∼ 8 kpc) in data at signal-to-noise ratio (S/N) > 450 provides a new firm lower distance limit of 8 kpc for the anti-centre shell HVC. Similarly, the non-detection of Ca II K IS absorption towards HD 86248 at S/N ∼ 500 places a lower distance limit of 7.6 kpc for Complex EP, unsurprising since this feature is probably related to the Magellanic System. The lack of detection of Na I D at S/N = 35 towards Mrk 595 puts an improved upper limit for the Na I column density of log (NNaD <) 10.95 cm−2 towards this part of the Cohen Stream where Ca II was detected by Wakker et al. Absorption at ∼ −40 km s−1 is detected in Na I D towards the Galactic star PG 0039+049 at S/N = 75, placing a firm upper distance limit of 1 kpc for the intermediate-velocity cloud south (IVS), where a tentative detection had previously been obtained by Centurion et al. Ca ´ II K and Na I D absorption is detected at −53 km s−1 towards HD 93521, which confirms the upper distance limit of 2.4 kpc for part of the IV arch complex obtained using the International Ultraviolet Explorer (IUE) data by Danly. Towards HD 216411 in Complex H a non-detection in Na D towards gas with log(NH I) = 20.69 cm−2 puts a lower distance limit of 6.6 kpc towards this HVC complex. Additionally, Na I D absorption is detected at −43.7 km s−1 in the star HD 218915 at a distance of 5.0 kpc in gas in the same region of the sky as Complex H. Finally, the Na I/Ca II and Ca II/H I ratios of the current sample are found to lie in the range observed for previous studies of IHVCs.
Resumo:
Theoretical emission-line ratios involving Fe xi transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross-sections. These are subsequently compared with both long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A) and first-order observations (similar to 235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe xi are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density (N-e) diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe xi electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N-e = 108 and 1011 cm-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N-e = 108 and 1011 cm-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe x 174.52 A feature, unless the first-order instrument response is enhanced.
Resumo:
We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in a Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK/L bol) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of "super-saturation" supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.
Resumo:
We present new observations of 470 stars using the Fibre Large Array Multi-Element Spectrograph ( FLAMES) instrument in fields centered on the clusters NGC330 and NGC346 in the Small Magellanic Cloud (SMC), and NGC2004 and the N11 region in the Large Magellanic Cloud (LMC). A further 14 stars were observed in the N11 and NGC330 fields using the Ultraviolet and Visual Echelle Spectrograph (UVES) for a separate programme. Spectral classifications and stellar radial velocities are given for each target, with careful attention to checks for binarity. In particular, we have investigated previously unexplored regions around the central LH9/LH10 complex of N11, finding similar to 25 new O-type stars from our spectroscopy. We have observed a relatively large number of Be-type stars that display permitted Fe II emission lines. These are primarily not in the cluster cores and appear to be associated with classical Be-type stars, rather than pre main-sequence objects. The presence of the Fe II emission, as compared to the equivalent width of Ha, is not obviously dependent on metallicity. We have also explored the relative fraction of Be- to normal B-type stars in the field-regions near to NGC330 and NGC2004, finding no strong evidence of a trend with metallicity when compared to Galactic results. A consequence of service observations is that we have reasonable time-sampling in three of our FLAMES fields. We find lower limits to the binary fraction of O- and early B-type stars of 23 to 36%. One of our targets (NGC346-013) is especially interesting with a massive, apparently hotter, less luminous secondary component.
Resumo:
The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances are determined from several lines of two ionization states in both stars resulting in [Mg/Fe] = - 0.24 +/- 0.16 (+/- 0.28). This result suggests that the [alpha(Mg)/Fe] ratio in WLM may be suppressed relative to solar abundances ( also supported by differential abundances relative to similar stars in NGC 6822 and the Small Magellanic Cloud [SMC]). The absolute Mg abundance, [Mg/H] = -0.62, is high relative to what is expected from the nebulae though, where two independent spectroscopic analyses of the H II regions in WLM yield [O/H] = - 0.89. Intriguingly, the oxygen abundance determined from the O I lambda6158 feature in one WLM star is [O/H] = - 0.21 +/- 0.10 (+/- 0.05), corresponding to 5 times higher than the nebular oxygen abundance. This is the first time that a significant difference between stellar and nebular oxygen abundances has been found, and currently, there is no simple explanation for this difference. The two stars are massive supergiants with distances that clearly place them in WLM. They are young ( less than or equal to 10 Myr) and should have a similar composition to the ISM. Additionally, differential abundances suggest that the O/Fe ratio in the WLM star is consistent with similar stars in NGC 6822 and the SMC, galaxies where the average stellar oxygen abundances are in excellent agreement with the nebular results. If the stellar abundances reflect the true composition of WLM, then this galaxy lies well above the metallicity-luminosity relationship for dwarf irregular galaxies. It also suggests that WLM is more chemically evolved than currently interpreted from its color-magnitude diagram. The similarities between the stars in WLM and NGC 6822 suggest that these two galaxies may have had similar star formation histories.
Resumo:
We have obtained the first high-resolution spectra of individual stars in the dwarf irregular galaxy NGC 6822. The spectra of the two A-type supergiants were obtained at the Very Large Telescope and Keck Observatories, using the Ultraviolet-Visual Echelle Spectrograph and the High Resolution Echelle Spectrometer, respectively. A detailed model atmospheres analysis has been used to determine their atmospheric parameters and elemental abundances. The mean iron abundance from these two stars is [[Fe/H]] = -0.49 +/- 0.22 (+/- 0.21),(6) with Cr yielding a similar underabundance, [[Cr/H]] = -0.50 +/- 0.20 (+/- 0.16). This confirms that NGC 6822 has a metallicity that is slightly higher than that of the SMC and is the first determination of the present-day iron group abundances in NGC 6822. The mean stellar oxygen abundance, 12 + log (O/H) = 8.36 +/- 0.19 (+/- 0.21), is in good agreement with the nebular oxygen results. Oxygen has the same underabundance as iron, [[O/ Fe]] = + 0.02 +/- 0.20 (+/- 0.21). This O/Fe ratio is very similar to that seen in the Magellanic Clouds, which supports the picture that chemical evolution occurs more slowly in these lower mass galaxies, although the O/Fe ratio is also consistent with that observed in comparatively metal-poor stars in the Galactic disk. Combining all of the available abundance observations for NGC 6822 shows that there is no trend in abundance with galactocentric distance. However, a subset of the highest quality data is consistent with a radial abundance gradient. More high-quality stellar and nebular observations are needed to confirm this intriguing possibility.