974 resultados para Spectral dispersion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter. © 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here a new class of multi-channel Fiber Bragg grating (FBG), which provides the characteristics of channelized dispersion but does so with only a single reflection band. An FBG of this type can provide pure phase control of the spectral waveform of optical pulses without introducing any deleterious insertion-loss-variation. We anticipate that this new class of FBG will find some applications in wavelengthdivision-multiplexing systems. ©2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. © 2012 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation and evolution of bound dissipative pulses in the all-normal dispersion Yb-fiber laser based on a novel 45° tilted fiber grating (TFG) are first investigated both numerically and experimentally. Based on the nonlinear polarization rotation technique, the TFG and two polarization controllers (PCs) are exploited for stable self-started passive mode locking. Numerical results show that the formation of bound-state pulses in the all-normal dispersion region is the progress of soliton shaping through the dispersive waves and follows the soliton energy quantization effect. Theoretical and experimental results demonstrate that the formation mechanism of bound-state pulses can be attributed to the high pump strength and effective filter bandwidth. The obtained bound-state dissipative pulses with quasi-rectangular spectral profile have fixed pulse separation as a function of pump power. © 2013 Astro Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient numerical modelling of the power, spectral and statistical properties of partially coherent quasi-CW Raman fiber laser radiation is presented. XPM between pump wave and generated Stokes wave is not important in the generation spectrum broadening and XPM term can be omitted in propagation equation what sufficiently speeds-up simulations. The time dynamics of Raman fiber laser (RFL) is stochastic exhibiting events several times more intense that the mean value on the ps timescale. However, the RFL has different statistical properties on different time scales. The probability density function of spectral power density is exponential for the generation modes located either in the spectrum centre or spectral wings while the phases are distributed uniformly. The pump wave preserves the initial Gaussian statistics during propagation in the laser cavity. Intense pulses in the pump wave are evolved under the SPM influence and are not disturbed by the dispersion. Contrarily, in the generated wave the dispersion plays a significant role that results in stochastic behavior. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance characteristics of the process as well as to identify the optimal operational conditions within the space of system parameters. It is shown that the group velocity dispersion of the fiber is not detrimental and, in fact, helps achieve optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be generated in the region of optimum compression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman fibre lasers and converters using the stimulated Raman scattering (SRS) in optical fibre waveguide are attractive for many applications ranging from telecommunications to bio-medical applications [1]. Multiple-wavelength Raman laser sources emitting at two and more wavelengths have been proposed to increase amplification spectrum of Raman fibre amplifiers and to improve noise characteristics [2,3]. Typically, a single fibre waveguide is used in such devices while multi-wavelength generation is achieved by employing corresponding number of fibre Bragg grating (FBG) pairs forming laser resonator. This approach, being rather practical, however, might not provide a good level of cross coherence between radiation generated at different wavelengths due to difference in FBGs and random phase fluctuations between the two wavelengths. In this work we examine a scheme of two-wavelength Raman fibre laser with high-Q cavity based on spectral intracavity broadening [3]. We demonstrate feasibility of such configuration and perform numerical analysis clarifying laser operation using an amplitude propagation equation model that accounts for all key physical effects in nonlinear fibre: dispersion, Kerr nonlinearity, Raman gain, depletion of the Raman pump wave and fibre losses. The key idea behind this scheme is to take advantage of the spectral broadening that occurs in optical fibre at high powers. The effect of spectral broadening leads to effective decrease of the FBGs reflectivity and enables generation of two waves in one-stage Raman laser. The output spectrum in the considered high-Q cavity scheme corresponds to two peaks with 0.2 - 1 nm distance between them. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study optical wave turbulence in Raman fibre lasers using particular examples of 13 km and 22 km long Fabry-Perot resonators. We demonstrate that the sign of the cavity dispersion has a critical impact on the spectral and temporal properties of generated radiation that are directly relevant to the fibre laser performance. For a normal dispersion, we observe in numerical modelling an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a strongly fluctuating regime with a wider spectrum. The experimental results for the generated spectra demonstrate a good match with numerical simulations. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various advanced temporal waveforms can be generated, including parabolic, flattop and triangular pulses. An application of this approach using a flattop spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional, dispersion-managed and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose two new approaches to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fibre. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of side lobes in the spectrum. Another strategy is to select a regime of propagation in which normal group-velocity dispersion reshapes the initial stretched pulse to a near-Fourier-transform-limited rectangular waveform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timber is one of the most widely used structural material all over the world. Round timbers can be seen as a structural component in historical buildings, jetties, short span bridges and also as piles for foundation and poles for electrical and power distribution. To evaluate the current condition of these cylindrical type timber structures, guided wave has a great potential. However, the difficulties associated with the guided wave propagation in timber materials includes orthotropic behaviour of wood, moisture contents, temperature, grain direction, etc. In addition, the effect of fully or partially filled surrounding media, such as soil, water, etc. causes attenuation on the generated stress wave. In order to investigate the effects of these parameters on guided wave propagation, extensive numerical simulation is required to conduct parametric studies. Moreover, due to the presence of multi modes in guided wave propagation, dispersion curves are of great importance. Even though conventional finite element method (FEM) can determine dispersion curves along with wave propagation in time domain, it is highly computationally expensive. Furthermore, incorporating orthotropic behaviour and surrounding media to model a thick cylindrical wave (large diameter cylindrical structures) make conventional FEM inefficient for this purpose. In contrast, spectral finite element method (SFEM) is a semi analytical method to model the guided wave propagation which does not need fine meshes compared to the other methods, such as FEM or finite difference method (FDM). Also, even distribution of mass and stiffness of structures can be obtained with very few elements using SFEM. In this paper, the suitability of SFEM is investigated to model guided wave propagation through an orthotropic cylindrical waveguide with the presence of surrounding soil. Both the frequency domain analysis (dispersion curves) and time domain reconstruction for a multi-mode generated input signal are presented under different loading location. The dispersion curves obtained from SFEM are compared against analytical solution to verify its accuracy. Lastly, different numerical issues to solve for the dispersion curves and time domain results using SFEM are also discussed.