944 resultados para Spectral broadening


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural iowaite, magnesium–ferric oxychloride mineral having light green color originating from Australia has been characterized by EPR, optical, IR, and Raman spectroscopy. The optical spectrum exhibits a number of electronic bands due to both Fe(III) and Mn(II) ions in iowaite. From EPR studies, the g values are calculated for Fe(III) and g and A values for Mn(II). EPR and optical absorption studies confirm that Fe(III) and Mn(II) are in distorted octahedral geometry. The bands that appear both in NIR and Raman spectra are due to the overtones and combinations of water and carbonate molecules. Thus EPR, optical, and Raman spectroscopy have proven most useful for the study of the chemistry of natural iowaite and chemical changes in the mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A voglite mineral sample of Volrite Canyon #1 mine, Frey Point, White Canyon Mine District, San Juan County, Utah, USA is used in the present study. An EPR study on powdered sample confirms the presence of Mn(II) and Cu(II). Optical absorption spectral results are due to Cu(II) which is in distorted octahedron. NIR results are indicating the presence of water fundamentals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These image hashes can be used for watermarking, image integrity authentication or image indexing for fast retrieval. This paper introduces a new method of generating image hashes based on extracting Higher Order Spectral features from the Radon projection of an input image. The feature extraction process is non-invertible, non-linear and different hashes can be produced from the same image through the use of random permutations of the input. We show that the transform is robust to typical image transformations such as JPEG compression, noise, scaling, rotation, smoothing and cropping. We evaluate our system using a verification-style framework based on calculating false match, false non-match likelihoods using the publicly available Uncompressed Colour Image database (UCID) of 1320 images. We also compare our results to Swaminathan’s Fourier-Mellin based hashing method with at least 1% EER improvement under noise, scaling and sharpening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates aspects of encoding the speech spectrum at low bit rates, with extensions to the effect of such coding on automatic speaker identification. Vector quantization (VQ) is a technique for jointly quantizing a block of samples at once, in order to reduce the bit rate of a coding system. The major drawback in using VQ is the complexity of the encoder. Recent research has indicated the potential applicability of the VQ method to speech when product code vector quantization (PCVQ) techniques are utilized. The focus of this research is the efficient representation, calculation and utilization of the speech model as stored in the PCVQ codebook. In this thesis, several VQ approaches are evaluated, and the efficacy of two training algorithms is compared experimentally. It is then shown that these productcode vector quantization algorithms may be augmented with lossless compression algorithms, thus yielding an improved overall compression rate. An approach using a statistical model for the vector codebook indices for subsequent lossless compression is introduced. This coupling of lossy compression and lossless compression enables further compression gain. It is demonstrated that this approach is able to reduce the bit rate requirement from the current 24 bits per 20 millisecond frame to below 20, using a standard spectral distortion metric for comparison. Several fast-search VQ methods for use in speech spectrum coding have been evaluated. The usefulness of fast-search algorithms is highly dependent upon the source characteristics and, although previous research has been undertaken for coding of images using VQ codebooks trained with the source samples directly, the product-code structured codebooks for speech spectrum quantization place new constraints on the search methodology. The second major focus of the research is an investigation of the effect of lowrate spectral compression methods on the task of automatic speaker identification. The motivation for this aspect of the research arose from a need to simultaneously preserve the speech quality and intelligibility and to provide for machine-based automatic speaker recognition using the compressed speech. This is important because there are several emerging applications of speaker identification where compressed speech is involved. Examples include mobile communications where the speech has been highly compressed, or where a database of speech material has been assembled and stored in compressed form. Although these two application areas have the same objective - that of maximizing the identification rate - the starting points are quite different. On the one hand, the speech material used for training the identification algorithm may or may not be available in compressed form. On the other hand, the new test material on which identification is to be based may only be available in compressed form. Using the spectral parameters which have been stored in compressed form, two main classes of speaker identification algorithm are examined. Some studies have been conducted in the past on bandwidth-limited speaker identification, but the use of short-term spectral compression deserves separate investigation. Combining the major aspects of the research, some important design guidelines for the construction of an identification model when based on the use of compressed speech are put forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The transgenic adenocarcinoma of the mouse prostate (TRAMP) model closely mimics PC-progression as it occurs in humans. However, the timing of disease incidence and progression (especially late stage) makes it logistically difficult to conduct experiments synchronously and economically. The development and characterization of androgen depletion independent (ADI) TRAMP sublines are reported. METHODS Sublines were derived from androgen-sensitive TRAMP-C1 and TRAMP-C2 cell lines by androgen deprivation in vitro and in vivo. Epithelial origin (cytokeratin) and expression of late stage biomarkers (E-cadherin and KAI-1) were evaluated using immunohistochemistry. Androgen receptor (AR) status was assessed through quantitative real time PCR, Western blotting, and immunohistochemistry. Coexpression of AR and E-cadherin was also evaluated. Clonogenicity and invasive potential were measured by soft agar and matrigel invasion assays. Proliferation/survival of sublines in response to androgen was assessed by WST-1 assay. In vivo growth of subcutaneous tumors was assessed in castrated and sham-castrated C57BL/6 mice. RESULTS The sublines were epithelial and displayed ADI in vitro and in vivo. Compared to the parental lines, these showed (1) significantly faster growth rates in vitro and in vivo independent of androgen depletion, (2) greater tumorigenic, and invasive potential in vitro. All showed substantial downregulation in expression levels of tumor suppressor, E-cadherin, and metastatis suppressor, KAI-1. Interestingly, the percentage of cells expressing AR with downregulated E-cadherin was higher in ADI cells, suggesting a possible interaction between the two pathways. CONCLUSIONS The TRAMP model now encompasses ADI sublines potentially representing different phenotypes with increased tumorigenicity and invasiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.