809 resultados para Specific motor skills
Resumo:
Zusammenfassung. In der vorliegenden Studie wird der Frage nachgegangen, ob sich zwischen beliebten, durchschnittlichen, unbeachteten und zurückgewiesenen Kindern Unterschiede in spezifischen kognitiven und motorischen Fähigkeiten finden lassen. Zu drei verschiedenen Zeitpunkten wurden mit 177 regulär eingeschulten 7-jährigen Kindern Peernominationen und Peerratings erhoben, um reliable soziometrische Daten zu erhalten und ein Vergleich der beiden Methoden vorzunehmen. Außerdem wurde eine umfassende Testbatterie von insgesamt 20 Aufgaben in den Bereichen Informationsverarbeitungsgeschwindigkeit, Kurzzeit- und Arbeitsgedächtnis, Inhibition, Sprache und Motorik durchgeführt. Mit Ausnahme der Kurzzeitgedächtniskapazität wurden für alle Funktionsbereiche signifikante Unterschiede zwischen den Statusgruppen gefunden. Die kontinuierlichen soziometrischen Werte der Ratingmethode zeigten sich etwas sensitiver als die der Nominationsmethode. Korrelativ wurde mit beiden Methoden ersichtlich, dass bessere Leistungen im kognitiven und motorischen Bereich nicht nur mit mehr Beliebtheit zusammenhingen, sondern auch, dass schlechte Leistungen in Verbindung standen mit sozialer Zurückweisung. Abstract. In the present study, it was investigated whether popular, average, neglected, and rejected children differ with respect to specific cognitive and motor skills. Peer nomination and peer rating methods were used at three different points in time to obtain reliable sociometric data of 177 regularly enrolled 7-year-old children and to compare the two methods. Furthermore, a battery comprising 21 tasks was used to assess speed of information processing, short-term and working memory, inhibition, language, and motor skills. Significant differences were found between children of different status groups with respect to all studied abilities with the exception of short-term memory. The continuous sociometric scores of the rating method resulted to be slightly more sensitive than those obtained with the nomination method. However, correlative analyses with both methods showed that better performance on the cognitive and motor tasks was associated with popularity, whereas worse performance was related to social rejection.
Resumo:
High precision in motor skill performance, in both sport and other domains (e.g. surgery and aviation), requires the efficient coupling of perceptual inputs (e.g. vision) and motor actions. A particular gaze strategy, which has received much attention within the literature, has been shown to predict both inter- (expert vs. novice) and intra-individual (successful vs. unsuccessful) motor performance (see Vine et al., 2014). Vickers (1996) labelled this phenomenon the quiet eye (QE) which is defined as the final fixation before the initiation of the crucial phase of movement. While the positive influence of a long QE on accuracy has been revealed in a range of different motor skills, there is a growing number of studies suggesting that the relationship between QE and motor performance is not entirely monotonic. This raises interesting questions regarding the QE’s purview, and the theoretical approaches explaining its functionality. This talk aims to present an overview of the issues described above, and to discuss contemporary research and experimental approaches to examining the QE phenomenon. In the first part of the talk Dr. Vine will provide a brief and critical review of the literature, highlighting recent empirical advancements and potential directions for future research. In the second part, Dr. Klostermann will communicate three different theoretical approaches to explain the relationship between QE and motor performance. Drawing upon aspects of all three of these theoretical approaches, a functional inhibition role for the QE (related to movement parameterisation) will be proposed.
Resumo:
Since attention is an important prerequisite for learning, it is particularly worthwhile to promote it in schools, through specific interventions. The present study examined the effects of an acute bout of coordinative exercise in physical education on the attention of primary school children. A total of 90 fifth grade primary school children (41 boys, 49 girls; M = 11.0 yr., SD = 0.6) participated in the study and were randomly assigned to either the experimental or the control group. The experimental group received a cognitively demanding physical education lesson consisting of different coordinative exercises; the control group attended a normal sedentary school lesson. Before, immediately after, and 90 min. after each experimental condition, the children's attentional performance was tested using the revised version of the d2 Test of Attention (d2-R). Results of the repeated-measures analysis of variance (ANOVA) revealed that children's attentional performance increased through the specifically designed physical education lesson, not immediately but 90 min. after cessation. The results are discussed in terms of mechanisms explaining the relationship between acute physical exercise, and immediate and delayed effects on attention.
Resumo:
Primary motor cortex (M1) is involved in the production of voluntary movement and contains a complete functional representation, or map, of the skeletal musculature. This functional map can be altered by pathological experiences, such as peripheral nerve injury or stroke, by pharmacological manipulation, and by behavioral experience. The process by which experience-dependent alterations of cortical function occur is termed plasticity. In this thesis, plasticity of M1 functional organization as a consequence of behavioral experience was examined in adult primates (squirrel monkeys). Maps of movement representations were derived under anesthesia using intracortical microstimulation, whereby a microelectrode was inserted into the cortex to electrically stimulate corticospinal neurons at low current levels and evoke movements of the forelimb, principally of the hand. Movement representations were examined before and at several times after training on behavioral tasks that emphasized use of the fingers. Two behavioral tasks were utilized that dissociated the repetition of motor activity from the acquisition of motor skills. One task was easy to perform, and as such promoted repetitive motor activity without learning. The other task was more difficult, requiring the acquisition of motor skills for successful performance. Kinematic analysis indicated that monkeys used a consistent set of forelimb movements during pellet extractions. Functional mapping revealed that repetitive motor activity during the easier task did not produce plastic changes in movement representations. Instead, map plasticity, in the form of selective expansions of task-related movement representations, was only produced following skill acquisition on the difficult task. Additional studies revealed that, in general, map plasticity persisted without further training for up to three months, in parallel with the retention of task-related motor skills. Also, extensive additional training on the small well task produced further improvements in performance, and further changes in movement maps. In sum, these experiments support the following three conclusions regarding the role of M1 in motor learning. First, behaviorally-driven plasticity is learning-dependent, not activity-dependent. Second, plastic changes in M1 functional representations represent a neural correlate of acquired motor skills. Third, the persistence of map plasticity suggests that M1 is part of the neural substrate for the memory of motor skills. ^
Resumo:
Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
This study used genome-wide linkage analysis to detect Quantitative Trait Loci (QTLs) implicated in variation in general academic achievement as measured by the Queensland Core Skills Test (QCST) (Queensland Studies Authority, 2004). Data from 210 families were analysed. While no empirically derived significant or suggestive peaks for general academic achievement were indicated a peak on chromosome 2 was observed in a region where Posthuma et al. (2005) reported significant linkage for Performance IQ (PIQ) and suggestive linkage for Full Scale IQ (FSIQ), and Luciano et al. (this issue) observed significant linkage for PIQ and word reading. A peak on chromosome 18 was also observed approximately 20 cM removed from a region recently implicated in reading achievement. In addition, on chromosomes 2 and 18 peaks for a number of specific academic skills, two of which were suggestive, coincided with the general academic achievement peaks. The findings suggest that variation in general academic achievement is influenced by genes on chromosome 2 which have broad influence on a variety of cognitive abilities.
Resumo:
On my poster board I will display various samples of my student's writing to demonstrate their improved abilities due to my physical hand exercise.
Resumo:
The organizational and architectural configuration of white matter pathways connecting brain regions has ramifications for all facets of the human condition, including manifestations of incipient neurodegeneration. Although diffusion tensor imaging (DTI) has been used extensively to visualize white matter connectivity, due to the widespread presence of crossing fibres, the lateral projections of the corpus callosum are not normally detected using this methodology. Detailed knowledge of the transcallosal connectivity of the human cortical motor network has therefore remained elusive. We employed constrained spherical deconvolution (CSD) tractography - an approach that is much less susceptible to the influence of crossing fibres, in order to derive complete in-vivo characterizations of white matter pathways connecting specific motor cortical regions to their counterparts and other loci in the opposite hemisphere. The revealed patterns of connectivity closely resemble those derived from anatomical tracing in primates. It was established that dorsal premotor cortex (PMd) and supplementary motor area (SMA) have extensive interhemispheric connectivity - exhibiting both dense homologous projections, and widespread structural relations with every other region in the contralateral motor network. Through this in-vivo portrayal, the importance of non-primary motor regions for interhemispheric communication is emphasized. Additionally, distinct connectivity profiles were detected for the anterior and posterior subdivisions of primary motor cortex. The present findings provide a comprehensive representation of transcallosal white matter projections in humans, and have the potential to inform the development of models and hypotheses relating structural and functional brain connectivity.
Resumo:
Dans cette thèse, nous abordons le contrôle moteur du mouvement du coude à travers deux approches expérimentales : une première étude psychophysique a été effectuée chez les sujets humains, et une seconde implique des enregistrements neurophysiologiques chez le singe. Nous avons recensé plusieurs aspects non résolus jusqu’à présent dans l’apprentissage moteur, particulièrement concernant l’interférence survenant lors de l’adaptation à deux ou plusieurs champs de force anti-corrélés. Nous avons conçu un paradigme où des stimuli de couleur aident les sujets à prédire la nature du champ de force externe actuel avant qu’ils ne l’expérimentent physiquement durant des mouvements d’atteinte. Ces connaissances contextuelles faciliteraient l’adaptation à des champs de forces en diminuant l’interférence. Selon le modèle computationnel de l’apprentissage moteur MOSAIC (MOdular Selection And Identification model for Control), les stimuli de couleur aident les sujets à former « un modèle interne » de chaque champ de forces, à s’en rappeler et à faire la transition entre deux champs de force différents, sans interférence. Dans l’expérience psychophysique, quatre groupes de sujets humains ont exécuté des mouvements de flexion/extension du coude contre deux champs de forces. Chaque force visqueuse était associée à une couleur de l’écran de l’ordinateur et les deux forces étaient anti-corrélées : une force résistante (Vr) a été associée à la couleur rouge de l’écran et l’autre, assistante (Va), à la couleur verte de l’écran. Les deux premiers groupes de sujets étaient des groupes témoins : la couleur de l’écran changeait à chaque bloc de 4 essais, tandis que le champ de force ne changeait pas. Les sujets du groupe témoin Va ne rencontraient que la force assistante Va et les sujets du groupe témoin Vr performaient leurs mouvements uniquement contre une force résistante Vr. Ainsi, dans ces deux groupes témoins, les stimuli de couleur n’étaient pas pertinents pour adapter le mouvement et les sujets ne s’adaptaient qu’à une seule force (Va ou Vr). Dans les deux groupes expérimentaux, cependant, les sujets expérimentaient deux champs de forces différents dans les différents blocs d’essais (4 par bloc), associés à ces couleurs. Dans le premier groupe expérimental (groupe « indice certain », IC), la relation entre le champ de force et le stimulus (couleur de l’écran) était constante. La couleur rouge signalait toujours la force Vr tandis que la force Va était signalée par la couleur verte. L’adaptation aux deux forces anti-corrélées pour le groupe IC s’est avérée significative au cours des 10 jours d’entraînement et leurs mouvements étaient presque aussi bien ajustés que ceux des deux groupes témoins qui n’avaient expérimenté qu’une seule des deux forces. De plus, les sujets du groupe IC ont rapidement démontré des changements adaptatifs prédictifs dans leurs sorties motrices à chaque changement de couleur de l’écran, et ceci même durant leur première journée d’entraînement. Ceci démontre qu’ils pouvaient utiliser les stimuli de couleur afin de se rappeler de la commande motrice adéquate. Dans le deuxième groupe expérimental, la couleur de l’écran changeait régulièrement de vert à rouge à chaque transition de blocs d’essais, mais le changement des champs de forces était randomisé par rapport aux changements de couleur (groupe « indice-incertain », II). Ces sujets ont pris plus de temps à s’adapter aux champs de forces que les 3 autres groupes et ne pouvaient pas utiliser les stimuli de couleurs, qui n’étaient pas fiables puisque non systématiquement reliés aux champs de forces, pour faire des changements prédictifs dans leurs sorties motrices. Toutefois, tous les sujets de ce groupe ont développé une stratégie ingénieuse leur permettant d’émettre une réponse motrice « par défaut » afin de palper ou de sentir le type de la force qu’ils allaient rencontrer dans le premier essai de chaque bloc, à chaque changement de couleur. En effet, ils utilisaient la rétroaction proprioceptive liée à la nature du champ de force afin de prédire la sortie motrice appropriée pour les essais qui suivent, jusqu’au prochain changement de couleur d’écran qui signifiait la possibilité de changement de force. Cette stratégie était efficace puisque la force demeurait la même dans chaque bloc, pendant lequel la couleur de l’écran restait inchangée. Cette étude a démontré que les sujets du groupe II étaient capables d’utiliser les stimuli de couleur pour extraire des informations implicites et explicites nécessaires à la réalisation des mouvements, et qu’ils pouvaient utiliser ces informations pour diminuer l’interférence lors de l’adaptation aux forces anti-corrélées. Les résultats de cette première étude nous ont encouragés à étudier les mécanismes permettant aux sujets de se rappeler d’habiletés motrices multiples jumelées à des stimuli contextuels de couleur. Dans le cadre de notre deuxième étude, nos expériences ont été effectuées au niveau neuronal chez le singe. Notre but était alors d’élucider à quel point les neurones du cortex moteur primaire (M1) peuvent contribuer à la compensation d’un large éventail de différentes forces externes durant un mouvement de flexion/extension du coude. Par cette étude, nous avons testé l’hypothèse liée au modèle MOSAIC, selon laquelle il existe plusieurs modules contrôleurs dans le cervelet qui peuvent prédire chaque contexte et produire un signal de sortie motrice approprié pour un nombre restreint de conditions. Selon ce modèle, les neurones de M1 recevraient des entrées de la part de plusieurs contrôleurs cérébelleux spécialisés et montreraient ensuite une modulation appropriée de la réponse pour une large variété de conditions. Nous avons entraîné deux singes à adapter leurs mouvements de flexion/extension du coude dans le cadre de 5 champs de force différents : un champ nul ne présentant aucune perturbation, deux forces visqueuses anti-corrélées (assistante et résistante) qui dépendaient de la vitesse du mouvement et qui ressemblaient à celles utilisées dans notre étude psychophysique chez l’homme, une force élastique résistante qui dépendait de la position de l’articulation du coude et, finalement, un champ viscoélastique comportant une sommation linéaire de la force élastique et de la force visqueuse. Chaque champ de force était couplé à une couleur d’écran de l’ordinateur, donc nous avions un total de 5 couleurs différentes associées chacune à un champ de force (relation fixe). Les singes étaient bien adaptés aux 5 conditions de champs de forces et utilisaient les stimuli contextuels de couleur pour se rappeler de la sortie motrice appropriée au contexte de forces associé à chaque couleur, prédisant ainsi leur sortie motrice avant de sentir les effets du champ de force. Les enregistrements d’EMG ont permis d’éliminer la possibilité de co-contractions sous-tendant ces adaptations, étant donné que le patron des EMG était approprié pour compenser chaque condition de champ de force. En parallèle, les neurones de M1 ont montré des changements systématiques dans leurs activités, sur le plan unitaire et populationnel, dans chaque condition de champ de force, signalant les changements requis dans la direction, l’amplitude et le décours temporel de la sortie de force musculaire nécessaire pour compenser les 5 conditions de champs de force. Les changements dans le patron de réponse pour chaque champ de force étaient assez cohérents entre les divers neurones de M1, ce qui suggère que la plupart des neurones de M1 contribuent à la compensation de toutes les conditions de champs de force, conformément aux prédictions du modèle MOSAIC. Aussi, cette modulation de l’activité neuronale ne supporte pas l’hypothèse d’une organisation fortement modulaire de M1.
Resumo:
Résumé : L’entrainement sportif est « un processus de perfectionnement de l’athlète dirigé selon des principes scientifiques et qui, par des influences planifiées et systématiques (charges) sur la capacité de performance, vise à mener le sportif vers des performances élevées et supérieures dans un sport ou une discipline sportive » (Harre, 1982). Un entrainement sportif approprié devrait commencer dès l’enfance. Ainsi, le jeune sportif pourrait progressivement et systématiquement développer son corps et son esprit afin d’atteindre l’excellence sportive (Bompa, 2000; Weineck, 1997). Or plusieurs entraineurs, dans leur tentative de parvenir à des résultats de haut niveau rapidement, exposent les jeunes athlètes à une formation sportive très spécifique et rigoureuse, sans prendre le temps de développer convenablement les aptitudes physiques et motrices et les habiletés motrices fondamentales sous-jacentes aux habiletés sportives spécifiques (Bompa, 2000), d’où l’appellation « spécialisation hâtive ». Afin de contrer les conséquences néfastes de la spécialisation hâtive, de nouvelles approches d’entrainement ont été proposées. Une des façons d’y arriver consisterait notamment à pratiquer différents sports en bas âge (Fraser-Thomas, Côté et Deakin, 2008; Gould et Carson, 2004; Judge et Gilreath, 2009; LeBlanc et Dickson, 1997; Mostafavifar, Best et Myer, 2013), d’où l’appellation « diversification sportive ». Plusieurs organisations sportives et professionnelles ont décidé de valoriser et de mettre en place des programmes basés sur la diversification sportive (Kaleth et Mikesky, 2010). C’est donc à la suite d’une prise de conscience des effets néfastes de la spécialisation hâtive que des professionnels de l’activité physique d’une école secondaire du Québec (éducateur physique, kinésiologue et agent de développement sportif) ont mis en place un programme multisports-études novateur au premier cycle du secondaire, inspiré des sciences du sport et des lignes directrices du modèle de développement à long terme de l’athlète (DLTA) (Balyi, Cardinal, Higgs, Norris et Way, 2005). Le présent projet de recherche porte sur le développement des aptitudes physiques et motrices chez de jeunes sportifs inscrits à un programme de spécialisation sportive et de jeunes sportifs inscrits à un programme de diversification sportive à l’étape « S’entrainer à s’entrainer » (12 à 16 ans) du modèle de développement à long terme de l’athlète (Balyi et al., 2005). L’objectif principal de cette étude est de rendre compte de l’évolution des aptitudes physiques et motrices de jeunes élèves-athlètes inscrits, d’une part, à un programme sport-études soccer (spécialisation) et, d’autre part, à un programme multisports-études (diversification). Plus spécifiquement, cette étude tente de (a) dresser un portrait détaillé de l’évolution des aptitudes physiques et motrices des élèves-athlètes de chaque programme et de faire un parallèle avec la planification annuelle de chaque programme sportif et (b) de rendre compte des différences d’aptitudes physiques et motrices observées entre les deux programmes. Le projet de recherche a été réalisé dans une école secondaire de la province de Québec. Au total, 53 élèves-athlètes de première secondaire ont été retenus pour le projet de recherche selon leur volonté de participer à l’étude, soit 23 élèves-athlètes de première secondaire inscrits au programme sport-études soccer et 30 élèves-athlètes de première secondaire inscrits au programme multisports-études. Les élèves-athlètes étaient tous âgés de 11 à 13 ans. Treize épreuves standardisées d’aptitudes physiques et motrices ont été administrées aux élèves-athlètes des deux programmes sportifs en début, en milieu et en fin d’année scolaire. Le traitement des données s’est effectué à l’aide de statistiques descriptives et d’une analyse de variance à mesures répétées. Les résultats révèlent que (a) l’ensemble des aptitudes physiques et motrices des élèves-athlètes des deux programmes sportifs se sont améliorées au cours de l’année scolaire, (b) il est relativement facile de faire un parallèle entre l’évolution des aptitudes physiques et motrices des élèves-athlètes et la planification annuelle de chaque programme sportif, (c) les élèves-athlètes du programme multisports-études ont, en général, des performances semblables à celles des élèves-athlètes du programme sport-études soccer et (d) les élèves-athlètes du programme sport-études soccer ont, au cours de l’année scolaire, amélioré davantage leur endurance cardiorespiratoire, alors que ceux du programme multisports-études ont amélioré davantage (a) leur vitesse segmentaire des bras, (b) leur agilité à l’épreuve de course en cercle et (c) leur puissance musculaire des membres inférieurs, confirmant ainsi que les aptitudes physiques et motrices développées chez de jeunes athlètes qui se spécialisent tôt sont plutôt spécifiques au sport pratiqué (Balyi et al., 2005; Bompa, 1999; Cloes, Delfosse, Ledent et Piéron, 1994; Mattson et Richards, 2010), alors que celles développées à travers la diversification sportive sont davantage diversifiées (Coakley, 2010; Gould et Carson, 2004; White et Oatman, 2009). Ces résultats peuvent s’expliquer par (a) la spécificité ou la diversité des tâches proposées durant les séances d’entrainement, (b) le temps consacré à chacune de ces tâches et (c) les exigences reliées à la pratique du soccer comparativement aux exigences reliées à la pratique de plusieurs disciplines sportives. Toutefois, les résultats obtenus restent complexes à interpréter en raison de différents biais : (a) la maturation physique, (b) le nombre d’heures d’entrainement effectué au cours de l’année scolaire précédente, (c) le nombre d’heures d’entrainement offert par les deux programmes sportifs à l’étude et (d) les activités physiques et sportives pratiquées à l’extérieur de l’école. De plus, cette étude ne permet pas d’évaluer la qualité des interventions et des exercices proposés lors des entrainements ni la motivation des élèves-athlètes à prendre part aux séances d’entrainement ou aux épreuves physiques et motrices. Finalement, il serait intéressant de reprendre la présente étude auprès de disciplines sportives différentes et de mettre en évidence les contributions particulières de chaque discipline sportive sur le développement des aptitudes physiques et motrices de jeunes athlètes.
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.
Resumo:
Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.
Resumo:
Dans cette thèse, nous abordons le contrôle moteur du mouvement du coude à travers deux approches expérimentales : une première étude psychophysique a été effectuée chez les sujets humains, et une seconde implique des enregistrements neurophysiologiques chez le singe. Nous avons recensé plusieurs aspects non résolus jusqu’à présent dans l’apprentissage moteur, particulièrement concernant l’interférence survenant lors de l’adaptation à deux ou plusieurs champs de force anti-corrélés. Nous avons conçu un paradigme où des stimuli de couleur aident les sujets à prédire la nature du champ de force externe actuel avant qu’ils ne l’expérimentent physiquement durant des mouvements d’atteinte. Ces connaissances contextuelles faciliteraient l’adaptation à des champs de forces en diminuant l’interférence. Selon le modèle computationnel de l’apprentissage moteur MOSAIC (MOdular Selection And Identification model for Control), les stimuli de couleur aident les sujets à former « un modèle interne » de chaque champ de forces, à s’en rappeler et à faire la transition entre deux champs de force différents, sans interférence. Dans l’expérience psychophysique, quatre groupes de sujets humains ont exécuté des mouvements de flexion/extension du coude contre deux champs de forces. Chaque force visqueuse était associée à une couleur de l’écran de l’ordinateur et les deux forces étaient anti-corrélées : une force résistante (Vr) a été associée à la couleur rouge de l’écran et l’autre, assistante (Va), à la couleur verte de l’écran. Les deux premiers groupes de sujets étaient des groupes témoins : la couleur de l’écran changeait à chaque bloc de 4 essais, tandis que le champ de force ne changeait pas. Les sujets du groupe témoin Va ne rencontraient que la force assistante Va et les sujets du groupe témoin Vr performaient leurs mouvements uniquement contre une force résistante Vr. Ainsi, dans ces deux groupes témoins, les stimuli de couleur n’étaient pas pertinents pour adapter le mouvement et les sujets ne s’adaptaient qu’à une seule force (Va ou Vr). Dans les deux groupes expérimentaux, cependant, les sujets expérimentaient deux champs de forces différents dans les différents blocs d’essais (4 par bloc), associés à ces couleurs. Dans le premier groupe expérimental (groupe « indice certain », IC), la relation entre le champ de force et le stimulus (couleur de l’écran) était constante. La couleur rouge signalait toujours la force Vr tandis que la force Va était signalée par la couleur verte. L’adaptation aux deux forces anti-corrélées pour le groupe IC s’est avérée significative au cours des 10 jours d’entraînement et leurs mouvements étaient presque aussi bien ajustés que ceux des deux groupes témoins qui n’avaient expérimenté qu’une seule des deux forces. De plus, les sujets du groupe IC ont rapidement démontré des changements adaptatifs prédictifs dans leurs sorties motrices à chaque changement de couleur de l’écran, et ceci même durant leur première journée d’entraînement. Ceci démontre qu’ils pouvaient utiliser les stimuli de couleur afin de se rappeler de la commande motrice adéquate. Dans le deuxième groupe expérimental, la couleur de l’écran changeait régulièrement de vert à rouge à chaque transition de blocs d’essais, mais le changement des champs de forces était randomisé par rapport aux changements de couleur (groupe « indice-incertain », II). Ces sujets ont pris plus de temps à s’adapter aux champs de forces que les 3 autres groupes et ne pouvaient pas utiliser les stimuli de couleurs, qui n’étaient pas fiables puisque non systématiquement reliés aux champs de forces, pour faire des changements prédictifs dans leurs sorties motrices. Toutefois, tous les sujets de ce groupe ont développé une stratégie ingénieuse leur permettant d’émettre une réponse motrice « par défaut » afin de palper ou de sentir le type de la force qu’ils allaient rencontrer dans le premier essai de chaque bloc, à chaque changement de couleur. En effet, ils utilisaient la rétroaction proprioceptive liée à la nature du champ de force afin de prédire la sortie motrice appropriée pour les essais qui suivent, jusqu’au prochain changement de couleur d’écran qui signifiait la possibilité de changement de force. Cette stratégie était efficace puisque la force demeurait la même dans chaque bloc, pendant lequel la couleur de l’écran restait inchangée. Cette étude a démontré que les sujets du groupe II étaient capables d’utiliser les stimuli de couleur pour extraire des informations implicites et explicites nécessaires à la réalisation des mouvements, et qu’ils pouvaient utiliser ces informations pour diminuer l’interférence lors de l’adaptation aux forces anti-corrélées. Les résultats de cette première étude nous ont encouragés à étudier les mécanismes permettant aux sujets de se rappeler d’habiletés motrices multiples jumelées à des stimuli contextuels de couleur. Dans le cadre de notre deuxième étude, nos expériences ont été effectuées au niveau neuronal chez le singe. Notre but était alors d’élucider à quel point les neurones du cortex moteur primaire (M1) peuvent contribuer à la compensation d’un large éventail de différentes forces externes durant un mouvement de flexion/extension du coude. Par cette étude, nous avons testé l’hypothèse liée au modèle MOSAIC, selon laquelle il existe plusieurs modules contrôleurs dans le cervelet qui peuvent prédire chaque contexte et produire un signal de sortie motrice approprié pour un nombre restreint de conditions. Selon ce modèle, les neurones de M1 recevraient des entrées de la part de plusieurs contrôleurs cérébelleux spécialisés et montreraient ensuite une modulation appropriée de la réponse pour une large variété de conditions. Nous avons entraîné deux singes à adapter leurs mouvements de flexion/extension du coude dans le cadre de 5 champs de force différents : un champ nul ne présentant aucune perturbation, deux forces visqueuses anti-corrélées (assistante et résistante) qui dépendaient de la vitesse du mouvement et qui ressemblaient à celles utilisées dans notre étude psychophysique chez l’homme, une force élastique résistante qui dépendait de la position de l’articulation du coude et, finalement, un champ viscoélastique comportant une sommation linéaire de la force élastique et de la force visqueuse. Chaque champ de force était couplé à une couleur d’écran de l’ordinateur, donc nous avions un total de 5 couleurs différentes associées chacune à un champ de force (relation fixe). Les singes étaient bien adaptés aux 5 conditions de champs de forces et utilisaient les stimuli contextuels de couleur pour se rappeler de la sortie motrice appropriée au contexte de forces associé à chaque couleur, prédisant ainsi leur sortie motrice avant de sentir les effets du champ de force. Les enregistrements d’EMG ont permis d’éliminer la possibilité de co-contractions sous-tendant ces adaptations, étant donné que le patron des EMG était approprié pour compenser chaque condition de champ de force. En parallèle, les neurones de M1 ont montré des changements systématiques dans leurs activités, sur le plan unitaire et populationnel, dans chaque condition de champ de force, signalant les changements requis dans la direction, l’amplitude et le décours temporel de la sortie de force musculaire nécessaire pour compenser les 5 conditions de champs de force. Les changements dans le patron de réponse pour chaque champ de force étaient assez cohérents entre les divers neurones de M1, ce qui suggère que la plupart des neurones de M1 contribuent à la compensation de toutes les conditions de champs de force, conformément aux prédictions du modèle MOSAIC. Aussi, cette modulation de l’activité neuronale ne supporte pas l’hypothèse d’une organisation fortement modulaire de M1.