936 resultados para Species distribution modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high rate of amphibian endemism and the severe habitat modification in the Caribbean islands make them an ideal place to test if the current protected areas network might protect this group. In this study, we model distribution and map species richness of the 40 amphibian species from eastern Cuba with the objectives of identify hotspots, detect gaps in species representation in protected areas, and select additional areas to fill these gaps. We used two modeling methods, Maxent and Habitat Suitability Models, to reach a consensus distribution map for each species, then calculate species richness by combining specific models and finally performed gap analyses for species and hotspots. Our results showed that the models were robust enough to predict species distributions and that most of the amphibian hotspots were represented in reserves, but 50 percent of the species were incompletely covered and Eleutherodactylus rivularis was totally uncovered by the protected areas. We identified 1441 additional km2 (9.9% of the study area) that could be added to the current protected areas, allowing the representation of every species and all hotspots. Our results are relevant for the conservation planning in other Caribbean islands, since studies like this could contribute to fill the gaps in the existing protected areas and to design a future network. Both cases would benefit from modeling amphibian species distribution using available data, even if they are incomplete, rather than relying only in the protection of known or suspected hotspots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

fuzzySim is an R package for calculating fuzzy similarity in species occurrence patterns. It includes functions for data preparation, such as converting species lists (long format) to presence-absence tables (wide format), obtaining unique abbreviations of species names, or transposing (parts of) complex data frames; and sample data sets for providing practical examples. It can convert binary presence-absence to fuzzy occurrence data, using e.g. trend surface analysis, inverse distance interpolation or prevalence-independent environmental favourability modelling, for multiple species simultaneously. It then calculates fuzzy similarity among (fuzzy) species distributions and/or among (fuzzy) regional species compositions. Currently available similarity indices are Jaccard, Sørensen, Simpson, and Baroni-Urbani & Buser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To generate realistic predictions, species distribution models require the accurate coregistration of occurrence data with environmental variables. There is a common assumption that species occurrence data are accurately georeferenced; however, this is often not the case. This study investigates whether locational uncertainty and sample size affect the performance and interpretation of fine-scale species distribution models. This study evaluated the effects of locational uncertainty across multiple sample sizes by subsampling and spatially degrading occurrence data. Distribution models were constructed for kelp (Ecklonia radiata), across a large study site (680 km2) off the coast of southeastern Australia. Generalized additive models were used to predict distributions based on fine-resolution (2·5 m cell size) seafloor variables, generated from multibeam echosounder data sets, and occurrence data from underwater towed video. The effects of different levels of locational uncertainty in combination with sample size were evaluated by comparing model performance and predicted distributions. While locational uncertainty was observed to influence some measures of model performance, in general this was small and varied based on the accuracy metric used. However, simulated locational uncertainty caused changes in variable importance and predicted distributions at fine scales, potentially influencing model interpretation. This was most evident with small sample sizes. Results suggested that seemingly high-performing, fine-scale models can be generated from data containing locational uncertainty, although interpreting their predictions can be misleading if the predictions are interpreted at scales similar to the spatial errors. This study demonstrated the need to consider predictions across geographic space rather than performance alone. The findings are important for conservation managers as they highlight the inherent variation in predictions between equally performing distribution models, and the subsequent restrictions on ecological interpretations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim When faced with dichotomous events, such as the presence or absence of a species, discrimination capacity (the ability to separate the instances of presence from the instances of absence) is usually the only characteristic that is assessed in the evaluation of the performance of predictive models. Although neglected, calibration or reliability (how well the estimated probability of presence represents the observed proportion of presences) is another aspect of the performance of predictive models that provides important information. In this study, we explore how changes in the distribution of the probability of presence make discrimination capacity a context-dependent characteristic of models. For the first time,we explain the implications that ignoring the context dependence of discrimination can have in the interpretation of species distribution models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models based on species distributions are widely used and serve important purposes in ecology, biogeography and conservation. Their continuous predictions of environmental suitability are commonly converted into a binary classification of predicted (or potential) presences and absences, whose accuracy is then evaluated through a number of measures that have been the subject of recent reviews. We propose four additional measures that analyse observation-prediction mismatch from a different angle – namely, from the perspective of the predicted rather than the observed area – and add to the existing toolset of model evaluation methods. We explain how these measures can complete the view provided by the existing measures, allowing further insights into distribution model predictions. We also describe how they can be particularly useful when using models to forecast the spread of diseases or of invasive species and to predict modifications in speciesdistributions under climate and land-use change

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we used the information of the Annual Hunting Reports (AHRs) to obtain a high-resolution model of the potential favourableness for wild rabbit harvesting in Andalusia (southern Spain), using environmental and land-use variables as predictors. We analysed 32,134 AHRs from the period 1993/2001 reported by 6049 game estates to estimate the average hunting yields of wild rabbit in each Andalusian municipality (n5771). We modelled the favourableness for obtaining good hunting yields using stepwise logistic regression on a set of climatic, orographical, land use, and vegetation variables. The favourability equation was used to create a downscaled image representing the favourableness of obtaining good hunting yields for the wild rabbit in 161 km squares in Andalusia, using the Idrisi Image Calculator. The variables that affected hunting yields of wild rabbit were altitude, dry wood crops (mainly olive groves, almond groves, and vineyards), temperature, pasture, slope, and annual number of frost days. The 161 km squares with high favourableness values are scattered throughout the territory, which seems to be caused mainly by the effect of vegetation. Finally, we obtained quality categories for the territory by combining the probability values given by logistic regression with those of the environmental favourability function.