958 resultados para Spatio temporal distribution
Resumo:
A child's natural gait pattern may be affected by the gait laboratory environment. Wearable devices using body-worn sensors have been developed for gait analysis. The purpose of this study was to validate and explore the use of foot-worn inertial sensors for the measurement of selected spatio-temporal parameters, based on the 3D foot trajectory, in independently walking children with cerebral palsy (CP). We performed a case control study with 14 children with CP aged 6-15 years old and 15 age-matched controls. Accuracy and precision of the foot-worn device were measured using an optical motion capture system as the reference system. Mean accuracy±precision for both groups was 3.4±4.6cm for stride length, 4.3±4.2cm/s for speed and 0.5±2.9° for strike angle. Longer stance and shorter swing phases with an increase in double support were observed in children with CP (p=0.001). Stride length, speed and peak angular velocity during swing were decreased in paretic limbs, with significant differences in strike and lift-off angles. Children with cerebral palsy showed significantly higher inter-stride variability (measured by their coefficient of variation) for speed, stride length, swing and stance. During turning trajectories speed and stride length decreased significantly (p<0.01) for both groups, whereas stance increased significantly (p<0.01) in CP children only. Foot-worn inertial sensors allowed us to analyze gait spatiotemporal data outside a laboratory environment with good accuracy and precision and congruent results with what is known of gait variations during linear walking in children with CP.
Resumo:
The bathyal faunal communities of the NW Mediterranean slopes have been studied consistently in the last two decades, with a special focus on population structure, trophic dynamics and benthopelagic coupling of commercial deep-sea decapod crustaceans and fishes (reviewed in Sardà et al. 2004) and associated species (Cartes and Sardà, 1993; Company and Sardà, 1997, 2000; Cartes et al., 2001; Company et al., 2001, 2003, 2004). One of the major topographic features in the North-western Mediterranean slope is the presence of submarine canyons. Canyons play a major role in funnelling energy and organic matter from the shelf to bathyal and abyssal depths (Puig et al., 2000), but the implications of this enhanced organic supply in the deep-sea benthic communities is still mostly unknown. Trophic supply can follow two major pathways – vertical deposition in the water column (Billett et al., 1983; Baldwin et al., 1998; Lampitt et al., 2001) or down-slope advection on the margins (Puig et al., 2001; Bethoux et al., 2002; Canals et al., 2006) – and can be a limiting factor in the deep-sea, being especially important in the oligotrophic Mediterranean Sea (Sardà et al., 2004). Differences in the quantity, quality and timing of organic matter input to the deep seafloor have been used to explain patterns of biomass and abundance in benthic communities (Levin et al., 1994; Gooday & Turley, 1990; Billett et al., 2001; Galéron et al., 2001; Puig et al., 2001; Gage, 2003) as well as other biological process and in particular the existence of seasonal reproduction (Tyler et al., 1994; Company et al., 2004 (MEPS). Reproduction is a highly energetic process tightly linked to food availability and quality.
Resumo:
The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.
Resumo:
We have investigated the temporal distribution of dengue (DEN) virus serotypes in the department (state) of Santander, Colombia, in relation to dengue incidence, infection pattern, and severity of disease. Viral isolation was attended on a total of 1452 acute serum samples collected each week from 1998 to 2004. The infection pattern was evaluated in 596 laboratory-positive dengue cases using an IgG ELISA, and PRNT test. The dengue incidence was documented by the local health authority. Predominance of DEN-1 in 1998 and DEN-3 re-introduction and predominance in 2001-2003 coincided with outbreaks. Predominance of DEN-2 in 2000-2001 coincided with more dengue hemorrhagic fever (DHF). DEN-4 was isolated in 2000-2001 and 2004 but was not predominant. There was an annual increase of primary dengue infections (from 13.7 to 81.4%) that correlated with frequency of DEN-3 (r = 0.83; P = 0.038). From the total number of primary dengue infections DEN-3 (81.3%) was the most frequent serotype. DHF was more frequent in DEN-2 infected patients than in DEN-3 infected patients: 27.5 vs 10.9% (P < 0.05). DEN-3 viruses belonged to subtype C (restriction site-specific-polymerase chain reaction) like viruses isolated in Sri-Lanka and other countries in the Americas. Our findings show the importance of continuous virological surveillance to identify the risk factors of dengue epidemics and severity.
Resumo:
Brazilian studies involving entomological succession patterns in carcasses have been used to describe the necrophagous entomofauna of a determined municipality or region with forensic objectives. Following the same objectives, an ecological study with 10 calyptrate dipterans was carried out during the winter of 2007 and the summer of 2008 in the metropolitan region of the municipality of Rio de Janeiro. The aim of this study was to describe several aspects of the phenology of these species in three neighbouring areas. Carcasses of three domestic pigs (Sus scrofa L.) were used in each season as models for forensic and legal medicine investigations in the region. Temperature, relative humidity and rainfall were measured daily and their relations with population abundance of the colonising species and the decomposition stages were analysed. Ten fly species were recorded to be colonising the carcasses, five of which belonged to the Calliphoridae family, three to the Muscidae, one to the Fanniidae and one to the Sarcophagidae family. Data show preferences of these species for climatic season and decomposition stage, as well as for the studied area and suggest that short distances can significantly influence the abundance of some species.
Resumo:
Chikungunya virus (CHIKV) transmission has been detected in America in 2013 and recently reached south up to Bolivia, Brazil and Paraguay, bordering countries of Argentina. The presence of the mosquito Aedes aegyptiin half of the country together with the regional context drove us to make a rapid assessment of transmission risk. Temperature thresholds for vector breeding and for virus transmission, together with adult activity from the literature, were mapped on a monthly basis to estimate risk. Transmission of chikungunya byAe. aegyptiin the world was seen at monthly mean temperatures from 21-34ºC, with the majority occurring between 26-28ºC. In Argentina temperatures above 21ºC are observed since September in the northeast, expanding south until January and retreating back to the northeast in April. The maximum area under risk encompasses more than half the country and around 32 million inhabitants. Vector adult activity was registered where monthly means temperatures exceeded 13ºC, in the northeast all over the year and in the northern half from September-May. The models herein proposed show that conditions for transmission are already present. Considering the regional context and the historic inability to control dengue in the region, chikungunya fever illness seems unavoidable.
Resumo:
Aim The spotted knapweed (Centaurea stoebe), a plant native to south-east and central Europe, is highly invasive in North America. We investigated the spatio-temporal climatic niche dynamics of the spotted knapweed in North America along two putative eastern and western invasion routes. We then considered the patterns observed in the light of historical, ecological and evolutionary factors. Location Europe and North America. Methods The niche characteristics of the east and west invasive populations of spotted knapweed in North America were determined from documented occurrences over 120 consecutive years (1890-2010). The 2.5 and 97.5 percentiles of values along temperature and precipitation gradients, as given by the two first axes of a principal component axis (PCA), were then calculated. We additionally measured the climatic dissimilarity between invaded and native niches using a multivariate environmental similarity surface (MESS) analysis. Results Along both invasion routes, the species established in regions with climatic conditions that were similar to those in the native range in Europe. An initial spread in ruderal habitats always preceded spread in (semi-)natural habitats. In the east, the niche gradually increased over time until it reached limits similar to the native niche. Conversely, in the west the niche abruptly expanded after an extended time lag into climates not occupied in the native range; only the native cold niche limit was conserved. Main conclusions Our study reveals that different niche dynamics have taken place during the eastern and western invasions. This pattern indicates different combinations of historical, ecological and evolutionary factors in the two ranges. We hypothesize that the lack of a well-developed transportation network in the west at the time of the introduction of spotted knapweed confined the species to a geographically and climatically isolated region. The invasion of dry rangelands may have been favoured during the agricultural transition in the 1930s by release from natural enemies, local adaptation and less competitive vegetation, but further experimental and molecular studies are needed to explain these contrasting niche patterns fully. Our study illustrates the need and benefit of applying large-scale, temporally explicit approaches to understanding biological invasions.
Resumo:
Species that differ in their social system, and thus in traits such as group size and dispersal timing, may differ in their use of resources along spatial, temporal, or dietary dimensions. The role of sociality in creating differences in habitat use is best explored by studying closely related species or socially polymorphic species that differ in their social system, but share a common environment. Here we investigate whether five sympatric Anelosimus spider species that range from nearly solitary to highly social differ in their use of space and in their phenology as a function of their social system. By studying these species in Serra do Japi, Brazil, we find that the more social species, which form larger, longer-lived colonies, tend to live inside the forest, where sturdier, longer lasting vegetation is likely to offer better support for their nests. The less social species, which form single-family groups, in contrast, tend to occur on the forest edge where the vegetation is less robust. Within these two microhabitats, species with longer-lived colonies tend to occupy the potentially more stable positions closer to the core of the plants, while those with smaller and shorter-lived colonies build their nests towards the branch tips. The species further separate in their use of common habitat due to differences in the timing of their reproductive season. These patterns of habitat use suggest that the degree of sociality can enable otherwise similar species to differ from one another in ways that may facilitate their co-occurrence in a shared environment, a possibility that deserves further consideration.
Resumo:
A method has been developed for the determination of the oxygen uptake of small areas (0.01 mm2) in an entire chick embryo cultured in vitro under defined metabolic conditions. It is based on the recordings of the spectral changes of the hemoglobin used as oxygen source for the respiring tissue (Barzu and Borza, 1967). Rapid scanning of the hemoglobin absorbance over the preparation allows a comparison of the O2 uptake of various regions. Values of the order of 10(-2) 1 O2 . min-2 are measured in less than 10 sec with a spatial resolution of 100 micron. The differentiation of embryonic tissue is not disturbed by the measurements. The O2 diffusion in the media and in the tissue has been analyzed by digital simulation. The O2 uptake of the Hensen's node was measured from embryos starting at the stage of definitive primitive streak (stage 4) up to the stage of 10 somites. It increases from 0.6 to 1.1 nl . h-1 with a marked acceleration between stages 4 and 5. The values corrected for the protein content of the Hensen's node at stage 4, 5, 6 and 8 are 32, 30 and 28 microliter . mg-1 . h-1 respectively. The first scanning results show different patterns of the O2 utake at the level of the Hensen's node and of the neural plate. At stage 6-7, the corrected O2 uptake is 30 microliter . mg-1 . h-1 for . the former and 43 microliter . mg-1 . h-1 for the latter.
Resumo:
Bisphosphonates are known for their strong inhibitory effect on bone resorption. Their influence on bone formation however is less clear. In this study we investigated the spatio-temporal effect of locally delivered Zoledronate on peri-implant bone formation and resorption in an ovariectomized rat femoral model. A cross-linked hyaluronic acid hydrogel was loaded with the drug and applied bilaterally in predrilled holes before inserting polymer screws. Static and dynamic bone parameters were analyzed based on in vivo microCT scans performed first weekly and then biweekly. The results showed that the locally released Zoledronate boosted bone formation rate up to 100% during the first 17 days after implantation and reduced the bone resorption rate up to 1000% later on. This shift in bone remodeling resulted in an increase in bone volume fraction (BV/TV) by 300% close to the screw and 100% further away. The double effect on bone formation and resorption indicates a great potential of Zoledronate-loaded hydrogel for enhancement of peri-implant bone volume which is directly linked to improved implant fixation.
Resumo:
The seasonal characteristics of the Cerrado region strongly influence food resource predictability and vegetal tissue nutritional content. The aims of this work were to record the abundance and temporal distribution of Gonioterma exquisita Duckworth, 1964 (Lepidoptera, Elachistidae) and its relation with phenological, physical, and chemical traits of the host plant Byrsonima pachyphylla Griseb. (Malpighiaceae). Four nutritional quality parameters were determined for new and mature leaves: gross protein and nitrogen content, dry matter, and in vitro digestibility. We inspected 200 plants per month, searching for G. exquisita caterpillars. About 35.8% of the 2,400 plants inspected presented caterpillars, with an abundance peak in the wet season. Caterpillar abundance was positively correlated with mature leaf availability, their food resource. Although mature leaves presented lower gross protein and nitrogen contents than new leaves, this difference was small during the abundance peak of G. exquisita.