839 resultados para Spatial pattern and association
Resumo:
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to interannual climate variation than zooplankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin-scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown'' but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
The invasion of sodium spikes from the soma into dendrites was studied in hippocampal pyramidal cells by simultaneous extracellular and intracellular recordings in anesthetized rats and by simultaneous extracellular recordings of the somatic and dendritic potentials in freely behaving animals. During complex-spike patterns, recorded in the immobile or sleeping animal, dendritic invasion of successive spikes was substantially attenuated. Complex-spike bursts occurred in association with population discharge of CA3-CA1 pyramidal cells (sharp wave field events). Synaptic inhibition reduced the amplitude of sodium spikes in the dendrites and prevented the occurrence of calcium spikes. These findings indicate that (i) the voltage-dependent calcium influx into the dendrites is under the control of inhibitory neurons and (ii) the temporal coincidence of synaptic depolarization and activation of voltage-dependent calcium conductances by the backpropagating spikes during sharp wave bursts may be critical for synaptic plasticity in the intact hippocampus.
Resumo:
Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.
Resumo:
Objectives: The first aim of this study was to examine the rate, pattern and correlates of inpatient admission during the first 3 months of treatment for first-episode psychosis (FEP). The second aim was to determine whether the pattern of inpatient admission during this period was associated with remission of psychotic symptoms or inpatient service use at 15-month follow-up. Method: One hundred and four consecutive patients with FEP at a specialist treatment service were approached to participate in a follow-up study. Patients were grouped on the basis of the pattern of inpatient admission (none, one, or multiple) during the first 3 months of treatment. Clinical ratings at baseline and 3-month follow-up, and ratings of remission of psychotic symptoms at 3 and 15-month follow-up, were available for two-thirds of the patients. Inpatient data for the 15-month follow-up period were derived from an electronic database for most patients (n = 98). Results: Eighty (76.9%) of the 104 patients were admitted to an inpatient unit during the first 3 months of treatment. Fifty-nine (56.7%) patients had a single admission and 21 (20.2%) had multiple admissions. At baseline, inpatient admission was associated with a diagnosis of affective psychosis and more severe behavioural and functional disturbance but not positive psychotic symptoms. Multiple admissions were associated with risks to self or others at baseline and 3-month follow-up, and lack of remission of positive symptoms at 3 and 15-month follow-up. There was no association between the pattern of inpatient admission during the initial 3-month period and inpatient service use during the following 12-month period. Conclusions: The substantial proportion of young patients with FEP admitted to hospital emphasizes the need for youth-friendly treatment environments and practices. Although patients with multiple admissions during the initial treatment period are less likely to achieve remission, these patients are no more likely to establish a pattern of revolving-door hospitalizations compared with other patients.
Resumo:
Child growth in PNG shows strong regional differences, with highlands children being generally shorter but stockier than those from lowland areas. Differences in diet, socioeconomic status and local subsistence agriculture were found to be important predictors of child growth. All variables indicating higher socioeconomic status were correlated with better growth, as was a high consumption of imported and local high quality foods such as cereals, legumes, tinned fish or meat and fresh fish. Differences in subsistence explained between 25% and 50% of the geographical variation in growth. Child growth was better in systems based on cassava and sweet potato, and worse in those where banana, sago and taro are staples. The cultivation of all major cash crops and sales of fish and food crops improved child growth. Birth weights show similar patterns to those observed in child growth. The implications of these findings for possible interventions are discussed.
Resumo:
The spatial pattern of the vacuolation ('spongiform change') was studied in areas of the cerebral cortex in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The vacuoles were evenly distributed along the cortex in 40/106 (38%) areas studied and randomly distributed in 6/106 (5.6%) areas. In 22/106 (21%) areas, the vacuoles were aggregated into clusters, 50 - 1600 μm in diameter and which were distributed in a regular pattern parallel to the pia mater. In 38/106 (36%) areas, large clusters of vacuoles, at least 1600 μm in diameter, were present. No significant differences in spatial patterns were observed between the different cortical regions or between the upper and lower laminae. In addition, age at onset and duration of the disease had no significant affect on spatial patterns. The spatial distribution of the vacuolation contrasts with that reported in sporadic CJD (sCJD) suggesting a different pattern of cortical degeneration in vCJD.
Resumo:
The spatial pattern of the prion protein (PrP) deposits was studied in the cerebral cortex and cerebellum in 10 patients with sporadic Creutzfeldt–Jakob disease (CJD). In all patients the PrP deposits were aggregated into clusters and, in 90% of cortical areas and in 50% of cerebellar sections, the clusters exhibited a regular periodicity parallel to the tissue boundary; a spatial pattern also exhibited by ß-amyloid (Aß) deposits in Alzheimer's disease (AD). In the cerebral cortex, the incidence of regular clustering of the PrP deposits was similar in the upper and lower cortical laminae. The sizes of the PrP clusters in the upper and lower cortex were uncorrelated. No significant differences in mean cluster size of the PrP deposits were observed between brain regions. The size, location and distribution of the PrP deposit clusters suggest that PrP deposition occurs in relation to specific anatomical pathways and supports the hypothesis that prion pathology spreads through the brain via such pathways. In addition, the data suggest that there are similarities in the pathogenesis of extracellular protein deposits in prion disease and in AD.
Resumo:
Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.
Resumo:
The spatial pattern of the vacuolation ('spongiform change') was studied in the upper and lower laminae of the cerebral cortex, the CA1/CA2 sectors of the hippocampus and the molecular layer of the cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). Individual vacuoles were grouped into clusters, 50 to >1600 μm in diameter and, in the majority of tissue sections, the vacuole clusters were distributed with regular periodicity parallel to the tissue boundary. The size of the vacuole clusters was positively correlated with patient age in the lower laminae of the occipital cortex and the inferior temporal gyrus (ITG) and negatively correlated with age in the hippocampus. In addition, the size of the vacuole clusters was positively correlated with disease duration in the upper laminae of the ITG. The size and distribution of the vacuole clusters suggests that the vacuolation in CJD reflects the degeneration of specific brain pathways and supports the hypothesis that prion pathology may spread through the brain along well defined anatomical pathways. (C) 2000 Elsevier Science Ireland Ltd.
Resumo:
The spatial pattern of discrete beta-amyloid (A beta) deposits was studied in the superficial laminae of cortical fields of different types and in the hippocampus in 6 cases of Alzheimer's disease (AD). In 41/42 tissues examined, discrete A beta deposits were aggregated into clusters and in 34/41 tissues (25/34 of the cortical tissues), there was evidence for a regular periodicity of the A beta deposit clusters parallel to the tissue boundary. The dimensions of the clusters varied from 400 to > 12,800 microns in different tissues. Although the A beta deposit clusters were larger than predicted, the regular periodicity suggests that they develop in relation to groups of cells associated with specific projections. This would be consistent with the hypothesis that the distribution of discrete A beta deposits in AD could reflect progressive synaptic disconnection along interconnected neuronal pathways. This implies that amyloid deposition could be a response to, rather than a cause of, synaptic disconnection in AD.
Spatial pattern analysis of beta-amyloid (A beta) deposits in Alzheimer disease by linear regression
Resumo:
The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.
Resumo:
The spatial patterns of the diffuse, primitive, and classic beta-amyloid (Abeta) deposits was studied in the frontal and temporal cortex in cases of Alzheimer’s disease (AD) expressing different apolipoprotein (Apo E) genotypes. No significant differences in the density of the three Abeta deposit subtypes were observed in individuals expressing genotypes e2/3 and e3/3 compared with those expressing e3/4 and e4/4. In all patients, Abeta deposit subtypes occurred in the tissue in clusters. Chi-square contingency analyses of the data suggested that the cluster size of the diffuse and classic Abeta deposits was unrelated to Apo E genotype. However, the primitive (‘neuritic’) type Abeta deposits occurred more frequently in smaller, denser clusters in individuals expressing genotypes e3/4 and e4/4 compared with those expressing e2/3 and e3/3. Hence, the presence of the e4 allele may be associated with a more specific pattern of neuronal degeneration in the frontal and temporal cortex in AD.