965 resultados para Spatial autocorrelation
Resumo:
Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1) whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2) the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast). We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a 'cost'-optimal allocation of sampling effort should typically include some level of within-otolith replication in the experimental design. Our findings provide novel evidence to aid the design of future sampling programs and improve our general understanding of the mechanisms regulating elemental fingerprints.
Resumo:
Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.
Resumo:
Geographically referenced databases of species records are becoming increasingly available. Doubts over the heterogeneous quality of the underlying data may restrict analyses of such collated databases. We partitioned the spatial variation in species richness of littoral algae and molluscs from the UK National Biodiversity Network database into a smoothed mesoscale component and a local component. Trend surface analysis (TSA) was used to define the mesoscale patterns of species richness, leaving a local residual component that lacked spatial autocorrelation. The analysis was based on 10 km grid squares with 115035 records of littoral algae (729 species) and 66879 records of littoral molluscs (569 species). The TSA identified variation in algal and molluscan species richness with a characteristic length scale of approximately 120 km. Locations of the most species-rich grid squares were consistent with the southern and western bias of species richness in the UK marine flora and fauna. The TSA also identified areas which showed significant changes in the spatial pattern of species richness: breakpoints, which correspond to major headlands along the south coast of England. Patterns of algal and molluscan species richness were broadly congruent. Residual variability was strongly influenced by proxies of collection effort, but local environmental variables including length of the coastline and variability in wave exposure were also important. Relative to the underlying trend, local species richness hotspots occurred on all coasts. While there is some justification for scepticism in analyses of heterogeneous datasets, our results indicate that the analysis of collated datasets can be informative.
Resumo:
Prior family and adoption studies have suggested a genetic relationship between schizophrenia and schizotypy. However, this has never been verified using linkage methods. We therefore attempted to test for a correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. The Irish study of high-density schizophrenia families comprises 270 families with at least two members with schizophrenia or poor-outcome schizoaffective disorder (n = 637). Non-psychotic relatives were assessed using the structured interview for schizotypy (n = 746). A 10-cM multipoint, non-parametric, autosomal genomewide scan of schizophrenia was performed in Merlin. A scan of a quantitative trait comprising ratings of DSM-III-R criteria for schizotypal personality disorder in non-psychotic relatives was also performed. Schizotypy logarithm of the odds (LOD) scores were regressed onto schizophrenia LOD scores at all loci, with adjustment for spatial autocorrelation. To assess empirical significance, this was also carried out using 1000 null scans of schizotypy. The number of jointly linked loci in the real data was compared to distribution of jointly linked loci in the null scans. No markers were suggestively linked to schizotypy based on strict Lander Kruglyak criteria. Schizotypy LODs predicted schizophrenia LODs above chance expectation genome wide (empirical P = 0.04). Two and four loci yielded nonparametric LOD (NPLs) > 1.0 and > 0.75, respectively, for both schizophrenia and schizotypy (genome-wide empirical P = 0.04 and 0.02, respectively). These results suggest that at least a subset of schizophrenia susceptibility genes also affects schizotypy in non-psychotic relatives. Power may therefore be increased in molecular genetic studies of schizophrenia if they incorporate measures of schizotypy in non-psychotic relatives.
Resumo:
I draw attention to the need for ecologists to take spatial structure into account more seriously in hypothesis testing. If spatial autocorrelation is ignored, as it usually is, then analyses of ecological patterns in terms of environmental factors can produce very misleading results. This is demonstrated using synthetic but realistic spatial patterns with known spatial properties which are subjected to classical correlation and multiple regression analyses. Correlation between an autocorrelated response variable and each of a set of explanatory variables is strongly biased in favour of those explanatory variables that are highly autocorrelated - the expected magnitude of the correlation coefficient increases with autocorrelation even if the spatial patterns are completely independent. Similarly, multiple regression analysis finds highly autocorrelated explanatory variables "significant" much more frequently than it should. The chances of mistakenly identifying a "significant" slope across an autocorrelated pattern is very high if classical regression is used. Consequently, under these circumstances strongly autocorrelated environmental factors reported in the literature as associated with ecological patterns may not actually be significant. It is likely that these factors wrongly described as important constitute a red-shifted subset of the set of potential explanations, and that more spatially discontinuous factors (those with bluer spectra) are actually relatively more important than their present status suggests. There is much that ecologists can do to improve on this situation. I discuss various approaches to the problem of spatial autocorrelation from the literature and present a randomisation test for the association of two spatial patterns which has advantages over currently available methods.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.
Resumo:
Biotic communities in Antarctic terrestrial ecosystems are relatively simple and often lack higher trophic levels (e. g. predators); thus, it is often assumed that species' distributions are mainly affected by abiotic factors such as climatic conditions, which change with increasing latitude, altitude and/or distance from the coast. However, it is becoming increasingly apparent that factors other than geographical gradients affect the distribution of organisms with low dispersal capability such as the terrestrial arthropods. In Victoria Land (East Antarctica) the distribution of springtail (Collembola) and mite (Acari) species vary at scales that range from a few square centimetres to regional and continental. Different species show different scales of variation that relate to factors such as local geological and glaciological history, and biotic interactions, but only weakly with latitudinal/altitudinal gradients. Here, we review the relevant literature and outline more appropriate sampling designs as well as suitable modelling techniques (e. g. linear mixed models and eigenvector mapping), that will more adequately address and identify the range of factors responsible for the distribution of terrestrial arthropods in Antarctica.
Resumo:
Fluvial islands are emergent landforms which form at the interface between the permanently inundated areas of the river channel and the more stable areas of the floodplain as a result of interactions between physical river processes, wood and riparian vegetation. These highly dynamical systems are ideal to study soil structure development in the short to medium term, a process in which soil biota and plants play a substantial role. We investigated soil structure development on islands along a 40 year chronosequence within a 3 km island-braided reach of the Tagliamento River, Northeastern Italy. We used several parameters to capture different aspects of the soil structure, and measured biotic (e.g., fungal and plant root parameters) and abiotic (e.g. organic carbon) factors expected to determine the structure. We estimated models relating soil structure to its determinants, and, in order to confer statistical robustness to our results, we explicitly took into account spatial autocorrelation, which is present due to the space for time substitution inherent in the study of chronosequences and may have confounded results of previous studies. We found that, despite the eroding forces from the hydrological and geomorphological dynamics to which the system is subject, all soil structure variables significantly, and in some case greatly increased with site age. We interpret this as a macroscopic proxy for the major direct and indirect binding effects exerted by root variables and extraradical hyphae of arbuscular mycorrhizal fungi (AMF). Key soil structure parameters such as percentage of water stable aggregates (WSA) can double from the time the island landform is initiated (mean WSA = 30%) to the full 40 years (mean WSA = 64%) covered by our chronosequence. The study demonstrates the fundamental role of soil biota and plant roots in aggregating soils even in a system in which intense short to medium term physical disturbances are common.
Resumo:
Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota.
Resumo:
The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a new testate amoeba-based water table transfer function and thoroughly test it for the effects of spatial autocorrelation, clustered sampling design and uneven sampling gradients. We find that the transfer function has good predictive power; the best-performing model is based on tolerance-downweighted weighted averaging with inverse deshrinking (performance statistics with leave-one-out cross validation: R2 = 0.87, RMSEP = 5.25 cm). The new transfer function was applied to a short core from Stordalen mire, and reveals a major shift in peatland ecohydrology coincident with the onset of the Little Ice Age (c. AD 1400). We also applied the model to an independent contemporary dataset from Stordalen and find that it outperforms predictions based on other published transfer functions. The new transfer function will enable palaeohydrological reconstruction from permafrost peatlands in Northern Europe, thereby permitting greatly improved understanding of the long-term ecohydrological dynamics of these important carbon stores as well as their responses to recent climate change.
Resumo:
Identifying processes that shape species geographical ranges is a prerequisite for understanding environmental change. Currently, species distribution modelling methods do not offer credible statistical tests of the relative influence of climate factors and typically ignore other processes (e.g. biotic interactions and dispersal limitation). We use a hierarchical model fitted with Markov Chain Monte Carlo to combine ecologically plausible niche structures using regression splines to describe unimodal but potentially skewed response terms. We apply spatially explicit error terms that account for (and may help identify) missing variables. Using three example distributions of European bird species, we map model results to show sensitivity to change in each covariate. We show that the overall strength of climatic association differs between species and that each species has considerable spatial variation in both the strength of the climatic association and the sensitivity to climate change. Our methods are widely applicable to many species distribution modelling problems and enable accurate assessment of the statistical importance of biotic and abiotic influences on distributions.
Resumo:
We examined a remnant host plant (Primula veris L.) habitat network that was last inhabited by the rare butterfly Hamearis lucina L. in north Wales in 1943, to assess the relative contribution of several spatial parameters to its regional extinction. We first examined relationships between P. veris characteristics and H. lucina eggs in surviving H. lucina populations, and used these to predict the suitability and potential carrying capacity of the habitat network in north Wales. This resulted in an estimate of roughly 4500 eggs (ca 227 adults). We developed a discrete space, discrete time metapopulation model to evaluate the relative contribution of dispersal distance, habitat and environmental stochasticity as possible causes of extinction. We simulated the potential persistence of the butterfly in the current network as well as in three artificial (historical and present) habitat networks that differed in the quantity (current and X3) and fragmentation of the habitat (current and aggregated). We identified that reduced habitat quantity and increased isolation would have increased the probability of regional extinction, in conjunction with environmental stochasticity and H. lucina's dispersal distance. This general trend did not change in a qualitative manner when we modified the ability of dispersing females to stay in, and find suitable habitats (by changing the size of the grid cells used in the model). Contrary to most metapopulation model predictions, system persistence declined with increasing migration rate, suggesting that the mortality of migrating individuals in fragmented landscapes may pose significant risks to system-wide persistence. Based on model predictions for the present landscape we argue that a major programme of habitat restoration would be required for a re-established metapopulation to persist for > 100 years.