919 resultados para Spatial Habitat Modelling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the past three decades, the decline and altered spatial distribution of the western stock of Steller sea lions (Eumetopias jubatus) in Alaska have been attributed to changes in the distribution or abundance of their prey due to the cumulative effects of fisheries and environmental perturbations. During this period, dietary prey occurrence and diet diversity were related to population decline within metapopulation regions of the western stock of Steller sea lions, suggesting that environmental conditions may be variable among regions. The objective of this study, therefore, was to examine regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions within the context of recent measures of diet diversity and population trajectories. Habitat use was assessed by deploying satellite-depth recorders and satellite relay data loggers on juvenile Steller sea lions (n = 45) over a five-year period (2000–2004) within four regions of the western stock, including the western, central, and eastern Aleutian Islands, and central Gulf of Alaska. Areas used by sea lions during summer months (June, July, and August) were demarcated using satellite telemetry data and characterized by environmental variables (sea surface temperature [SST] and chlorophyll a [chl a]), which possibly serve as proxies for environmental processes or prey. Spatial patterns of SST diversity and Steller sea lion population trends among regions were fairly consistent with trends reported for diet studies, possibly indicating a link between environmental diversity, prey diversity, and distribution or abundance of Steller sea lions. Overall, maximum spatial heterogeneity coupled with minimal temporal variability of SST appeared to be beneficial for Steller sea lions. In contrast, these patterns were not consistent for chl a, and there appeared to be an ecological threshold. Understanding how Steller sea lions respond to measures of environmental heterogeneity will ultimately be useful for implementing ecosystem management approaches and developing additional conservation strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper establishes the spawning habitat of the Brazilian sardine Sardinella brasiliensis and investigates the spatial variability of egg density and its relation with oceanographic conditions in the shelf of the south-east Brazil Bight (SBB). The spawning habitats of S. brasiliensis have been defined in terms of spatial models of egg density, temperature-salinity plots, quotient (Q) analysis and remote sensing data. Quotient curves (Q(C)) were constructed using the geographic distribution of egg density, temperature and salinity from samples collected during nine survey cruises between 1976 and 1993. The interannual sea surface temperature (SST) variability was determined using principal component analysis on the SST anomalies (SSTA) estimated from remote sensing data over the period between 1985 and 2007. The spatial pattern of egg occurrences in the SBB indicated that the largest concentration occurred between Paranagua and Sao Sebastiao. Spawning habitat expanded and contracted during the years, fluctuating around Paranagua. In January 1978 and January 1993, eggs were found nearly everywhere along the inner shelf of the SBB, while in January 1988 and 1991 spawning had contracted to their southernmost position. The SSTA maps for the spawning periods showed that in the case of habitat expansion (1993 only) anomalies over the SBB were zero or slightly negative, whereas for the contraction period anomalies were all positive. Sardinella brasiliensis is capable of exploring suitable spawning sites provided by the entrainment of the colder and less-saline South Atlantic Central Water onto the shelf by means of both coastal wind-driven (to the north-east of the SBB) and meander-induced (to the south-west of the SBB) upwelling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowledge on how ligaments and articular surfaces guide passive motion at the human ankle joint complex is fundamental for the design of relevant surgical treatments. The dissertation presents a possible improvement of this knowledge by a new kinematic model of the tibiotalar articulation. In this dissertation two one-DOF spatial equivalent mechanisms are presented for the simulation of the passive motion of the human ankle joint: the 5-5 fully parallel mechanism and the fully parallel spherical wrist mechanism. These mechanisms are based on the main anatomical structures of the ankle joint, namely the talus/calcaneus and the tibio/fibula bones at their interface, and the TiCaL and CaFiL ligaments. In order to show the accuracy of the models and the efficiency of the proposed procedure, these mechanisms are synthesized from experimental data and the results are compared with those obtained both during experimental sessions and with data published in the literature. Experimental results proved the efficiency of the proposed new mechanisms to simulate the ankle passive motion and, at the same time, the potentiality of the mechanism to replicate the ankle’s main anatomical structures quite well. The new mechanisms represent a powerful tool for both pre-operation planning and new prosthesis design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spatial distribution of the American lobster Homarus americanus is influenced by many factors, which are often difficult to quantify. We implemented a modeling approach for quantifying season-, size-, and sex-specific lobster spatial distribution in the Gulf of Maine with respect to environmental and spatial variables including bottom temperature, bottom salinity, latitude, longitude, depth, distance offshore, and 2 substratum features. Lobster distribution was strongly associated with temperature and depth, and differed seasonally by sex. In offshore waters in the fall, females were dominant at higher latitudes and males at lower latitudes. This segregation was not apparent in the spring although females were still dominant at higher latitudes in offshore waters. Juveniles and adults were also distributed differently; juveniles were more abundant at the lower latitudes in inshore waters, while adults were more widespread along the entire coast. These patterns are consistent with the ecology of the American lobster. This study provides a tool to evaluate changes in lobster spatial distribution with respect to changes in key habitat and other environmental variables, and consequently could be of value for the management of the American lobster.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predicting species potential and future distribution has become a relevant tool in biodiversity monitoring and conservation. In this data article we present the suitability map of a virtual species generated based on two bioclimatic variables, and a dataset containing more than 700.000 random observations at the extent of Europe. The dataset includes spatial attributes such as, distance to roads, protected areas, country codes, and the habitat suitability of two spatially clustered species (grassland and forest species) and a wide spread species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.