909 resultados para Space-time analysis
Resumo:
For the quasi-static, Rayleigh-fading multiple-input multiple-output (MIMO) channel with n(t) transmit and n(r) receive antennas, Zheng and Tse showed that there exists a fundamental tradeoff between diversity and spatial-multiplexing gains, referred to as the diversity-multiplexing gain (D-MG) tradeoff. Subsequently, El Gamal, Caire, and Damen considered signaling across the same channel using an L-round automatic retransmission request (ARQ) protocol that assumes the presence of a noiseless feedback channel capable of conveying one bit of information per use of the feedback channel. They showed that given a fixed number L of ARQ rounds and no power control, there is a tradeoff between diversity and multiplexing gains, termed the diversity-multiplexing-delay (DMD) tradeoff. This tradeoff indicates that the diversity gain under the ARQ scheme for a particular information rate is considerably larger than that obtainable in the absence of feedback. In this paper, a set of sufficient conditions under which a space-time (ST) code will achieve the DMD tradeoff is presented. This is followed by two classes of explicit constructions of ST codes which meet these conditions. Constructions belonging to the first class achieve minimum delay and apply to a broad class of fading channels whenever n(r) >= n(t) and either L/n(t) or n(t)kslashL. The second class of constructions do not achieve minimum delay, but do achieve the DMD tradeoff of the fading channel for all statistical descriptions of the channel and for all values of the parameters n(r,) n(t,) L.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
"Extended Clifford algebras" are introduced as a means to obtain low ML decoding complexity space-time block codes. Using left regular matrix representations of two specific classes of extended Clifford algebras, two systematic algebraic constructions of full diversity Distributed Space-Time Codes (DSTCs) are provided for any power of two number of relays. The left regular matrix representation has been shown to naturally result in space-time codes meeting the additional constraints required for DSTCs. The DSTCs so constructed have the salient feature of reduced Maximum Likelihood (ML) decoding complexity. In particular, the ML decoding of these codes can be performed by applying the lattice decoder algorithm on a lattice of four times lesser dimension than what is required in general. Moreover these codes have a uniform distribution of power among the relays and in time, thus leading to a low Peak to Average Power Ratio at the relays.
Resumo:
Design criteria and full-diversity Distributed Space Time Codes (DSTCs) for the two phase transmission based cooperative diversity protocol of Jing-Hassibi and the Generalized Nonorthogonal Amplify and Forward (GNAF) protocol are reported, when the relay nodes are assumed to have knowledge of the phase component of the source to relay channel gains. It is shown that this under this partial channel state information (CSI), several well known space time codes for the colocated MIMO (Multiple Input Multiple Output) channel become amenable for use as DSTCs. In particular, the well known complex orthogonal designs, generalized coordinate interleaved orthogonal designs (GCIODs) and unitary weight single symbol decodable (UW-SSD) codes are shown to satisfy the required design constraints for DSTCs. Exploiting the relaxed code design constraints, we propose DSTCs obtained from Clifford Algebras which have low ML decoding complexity.
Resumo:
Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.
Resumo:
Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DST-BCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.
Resumo:
The differential encoding/decoding setup introduced by Kiran et at, Oggier et al and Jing et al for wireless relay networks that use codebooks consisting of unitary matrices is extended to allow codebooks consisting of scaled unitary matrices. For such codebooks to be used in the Jing-Hassibi protocol for cooperative diversity, the conditions that need to be satisfied by the relay matrices and the codebook are identified. A class of previously known rate one, full diversity, four-group encodable and four-group decodable Differential Space-Time Codes (DSTCs) is proposed for use as Distributed DSTCs (DDSTCs) in the proposed set up. To the best of our knowledge, this is the first known low decoding complexity DDSTC scheme for cooperative wireless networks.
Resumo:
Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.
Resumo:
It is known that by employing space-time-frequency codes (STFCs) to frequency selective MIMO-OFDM systems, all the three diversity viz spatial, temporal and multipath can be exploited. There exists space-time-frequency block codes (STFBCs) designed using orthogonal designs with constellation precoder to get full diversity (Z.Liu, Y.Xin and G.Giannakis IEEE Trans. Signal Processing, Oct. 2002). Since orthogonal designs of rate one exists only for two transmit antennas, for more than two transmit antennas STFBCs of rate-one and full-diversity cannot be constructed using orthogonal designs. This paper presents a STFBC scheme of rate one for four transmit antennas designed using quasi-orthogonal designs along with co-ordinate interleaved orthogonal designs (Zafar Ali Khan and B. Sundar Rajan Proc: ISIT 2002). Conditions on the signal sets that give full-diversity are identified. Simulation results are presented to show the superiority of our codes over the existing ones.
Resumo:
The problem of constructing space-time (ST) block codes over a fixed, desired signal constellation is considered. In this situation, there is a tradeoff between the transmission rate as measured in constellation symbols per channel use and the transmit diversity gain achieved by the code. The transmit diversity is a measure of the rate of polynomial decay of pairwise error probability of the code with increase in the signal-to-noise ratio (SNR). In the setting of a quasi-static channel model, let n(t) denote the number of transmit antennas and T the block interval. For any n(t) <= T, a unified construction of (n(t) x T) ST codes is provided here, for a class of signal constellations that includes the familiar pulse-amplitude (PAM), quadrature-amplitude (QAM), and 2(K)-ary phase-shift-keying (PSK) modulations as special cases. The construction is optimal as measured by the rate-diversity tradeoff and can achieve any given integer point on the rate-diversity tradeoff curve. An estimate of the coding gain realized is given. Other results presented here include i) an extension of the optimal unified construction to the multiple fading block case, ii) a version of the optimal unified construction in which the underlying binary block codes are replaced by trellis codes, iii) the providing of a linear dispersion form for the underlying binary block codes, iv) a Gray-mapped version of the unified construction, and v) a generalization of construction of the S-ary case corresponding to constellations of size S-K. Items ii) and iii) are aimed at simplifying the decoding of this class of ST codes.
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Resumo:
We address the problem of distributed space-time coding with reduced decoding complexity for wireless relay network. The transmission protocol follows a two-hop model wherein the source transmits a vector in the first hop and in the second hop the relays transmit a vector, which is a transformation of the received vector by a relay-specific unitary transformation. Design criteria is derived for this system model and codes are proposed that achieve full diversity. For a fixed number of relay nodes, the general system model considered in this paper admits code constructions with lower decoding complexity compared to codes based on some earlier system models.
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.