971 resultados para Space Optical Interconnects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an overview of the rationale behind the significant interest in polymer-based on-board optical links together with a brief review of recently reported work addressing certain challenges in this field. Polymer-based optical links have garnered considerable research attention due to their important functional attributes and compelling cost-benefit advantages in on-board optoelectronic systems as they can be cost-effectively integrated on conventional printed circuit boards. To date, significant work on the polymer materials, their fabrication process and their integration on standard board substrates have enabled the demonstration of numerous high-speed on-board optical links. However, to be deployed in real-world systems, these optoelectronic printed circuit boards (OE PCBs) must also be cost-effective. Here, recent advances in the integration process focusing on simple direct end-fire coupling schemes and the use of low-cost FR4 PCB substrates are presented. Performance of two proof-of-principle 10 Gb/s systems based on this integration method are summarised while work in realising more complex yet compact planar optical components is outlined. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance. © 2012 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-ofprinciple demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ -15 dB) and low crosstalk values (< -30 dB) are achieved for the fabricated samples while better than ± 6 μm -1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10-12 is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator. © 2012 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric effects can significantly degrade the reliability of free-space optical communications. One such effect is scintillation, caused by atmospheric turbulence, refers to random fluctuations in the irradiance and phase of the received laser beam. In this paper we inv stigate the use of multiple lasers and multiple apertures to mitigate scintillation. Since the scintillation process is slow, we adopt a block fading channel model and study the outage probability under the assumptions of orthogonal pulse-position modulation and non-ideal photodetection. Assuming perfect receiver channel state information (CSI), we derive the signal-to-noise ratio (SNR) exponents for the cases when the scintillation is lognormal, exponential and gammagamma distributed, which cover a wide range of atmospheric turbulence conditions. Furthermore, when CSI is also available at the transmitter, we illustrate very large gains in SNR are possible (in some cases larger than 15 dB) by adapting the transmitted power. Under a long-term power constraint, we outline fundamental design criteria via a simple expression that relates the required number of lasers and apertures for a given code rate and number of codeword blocks to completely remove system outages. Copyright © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique of cross talk mitigation developed for liquid crystal on silicon spatial light modulator based optical interconnects and fiber switches is demonstrated. By purposefully introducing an appropriate aberration into the system, it is possible to reduce the worst-case cross talk by over 10 dB compared to conventional Fourier-transform-based designs. Tests at a wavelength of 674nm validate this approach, and show that there is no noticeable reduction in diffraction efficiency. A 27% spot increase in beam diameter is observed, which is predicted to reduce at longer datacom and telecom wavelengths. © 2012 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplane as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, two different types of polymer waveguide-based optical backplanes are presented. The first one implements a passive shuffle architecture enabling non-blocking on-board optical interconnection between different cards/modules, while the second one deploys a regenerative bus architecture allowing the interconnection of an arbitrary number of electrical cards over a common optical bus. The polymer materials and the multimode waveguide components used to form the optical backplanes are presented, while details of the interconnection architectures and design of the backplanes are described. Proof-of-principle demonstrators fabricated onto low-cost FR4 substrates, including a 10-card 1 Tb/s-capacity passive shuffle router and 4-channel 3-card polymeric bus modules, are reported and their optical performance characteristics are presented. Low-loss, low-crosstalk on-board interconnection is achieved and error-free (BER10 12) 10 Gb/s communication between different card/module interfaces is demonstrated in both polymeric backplane systems. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multimode polymer waveguides are promising for use in board-level optical interconnects. In recent years, various on-board optical interconnection architectures have been demonstrated making use of passive routing waveguide components. In particular, 90° bends have played important roles in complex waveguide layouts enabling interconnection between non co-linear points on a board. Due to the dimensions and index step of the waveguides typically used in on-board optical interconnects, low-loss bends are typically limited to a radius of ∼ 10 mm. This paper therefore presents the design and fabrication of compact low-loss waveguide bends with reduced radii of curvature, offering significant reductions in the required areas for on-board optical circuits. The proposed design relies on the exposure of the bend section to the air, achieving tighter light confinement along the bend and reduced bending losses. Simulation studies carried out with ray tracing tools and experimental results from polymer samples fabricated on FR4 are presented. Low bending losses are achieved from the air-exposed bends up to 4 mm of radius of curvature, while an improvement of 14 μm in the 1 dB alignment tolerances at the input of these devices (fibre to waveguide coupling) is also obtained. Finally, the air-exposed bends are employed in an optical bus structure, offering reductions in insertion loss of up to 3.8 dB. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplanes as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, we present a 40 Gb/s optical backplane demonstrator based on the use of polymer multimode waveguides and a regenerative shared bus architecture. The system allows bus extension by cascading multiple polymeric bus modules through 3R regenerator units enabling the connection of an arbitrary number of electrical cards onto the bus. The proof-ofprinciple demonstrator reported here is formed with low-cost, commercially-available active devices and electronic components mounted on conventional FR4 substrates and achieves error-free 4×10 Gb/s optical interconnection between any two card interfaces on the bus. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RoFSO links are found to be susceptible to high-order laser distortion making conventional SFDR ineffective as a performance indicator. For the first time, peak input power is demonstrated as a service-independent bound on dynamic range. © OSA/ CLEO 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time multiplexed rectangular Zernike modal wavefront sensor based on a nematic phase-only liquid crystal spatial light modulator and specially designed for a high power two-electrode tapered laser diode which is a compact and novel free space optical communication source is used in an adaptive beam steering free space optical communication system, enabling the system to have 1.25 GHz modulation bandwidth, 4.6° angular coverage and the capability of sensing aberrations within the system and caused by atmosphere turbulence up to absolute value of 0.15 waves amplitude and correcting them in one correction cycle. Closed-loop aberration correction algorithm can be implemented to provide convergence for larger and time varying aberrations. Improvement of the system signal-to-noise-ratio performance is achieved by aberration correction. To our knowledge, it is first time to use rectangular orthonormal Zernike polynomials to represent balanced aberrations for high power rectangular laser beam in practice. © 2014 IEEE.