956 resultados para Source identification
Resumo:
Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.
Resumo:
Raman spectroscopy, when used in spatially offset mode, has become a potential tool for the identification of explosives and other hazardous substances concealed in opaque containers. The molecular fingerprinting capability of Raman spectroscopy makes it an attractive tool for the unambiguous identification of hazardous substances in the field. Additionally, minimal sample preparation is required compared with other techniques. We report a field portable time resolved Raman sensor for the detection of concealed chemical hazards in opaque containers. The new sensor uses a pulsed nanosecond laser source in conjunction with an intensified CCD detector. The new sensor employs a combination of time and space resolved Raman spectroscopy to enhance the detection capability. The new sensor can identify concealed hazards by a single measurement without any chemometric data treatments.
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
A multivariate approach to the identification of surrogate parameters for heavy metals in stormwater
Resumo:
Stormwater is a potential and readily available alternative source for potable water in urban areas. However, its direct use is severely constrained by the presence of toxic pollutants, such as heavy metals (HMs). The presence of HMs in stormwater is of concern because of their chronic toxicity and persistent nature. In addition to human health impacts, metals can contribute to adverse ecosystem health impact on receiving waters. Therefore, the ability to predict the levels of HMs in stormwater is crucial for monitoring stormwater quality and for the design of effective treatment systems. Unfortunately, the current laboratory methods for determining HM concentrations are resource intensive and time consuming. In this paper, applications of multivariate data analysis techniques are presented to identify potential surrogate parameters which can be used to determine HM concentrations in stormwater. Accordingly, partial least squares was applied to identify a suite of physicochemical parameters which can serve as indicators of HMs. Datasets having varied characteristics, such as land use and particle size distribution of solids, were analyzed to validate the efficacy of the influencing parameters. Iron, manganese, total organic carbon, and inorganic carbon were identified as the predominant parameters that correlate with the HM concentrations. The practical extension of the study outcomes to urban stormwater management is also discussed.
Resumo:
Police reported crash data are the primary source of crash information in most jurisdictions. However, the definition of serious injury within police-reported data is not consistent across jurisdictions and may not be accurate. With the Australian National Road Safety Strategy targeting the reduction of serious injuries, there is a greater need to assess the accuracy of the methods used to identify these injuries. A possible source of more accurate information relating to injury severity is hospital data. While other studies have compared police and hospital data to highlight the under-reporting in police-reported data, little attention has been given to the accuracy of the methods used by police to identify serious injuries. The current study aimed to assess how accurate the identification of serious injuries is in police-reported crash data, by comparing the profiles of transport-related injuries in the Queensland Road Crash Database with an aligned sample of data from the Queensland Hospital Admitted Patients Data Collection. Results showed that, while a similar number of traffic injuries were recorded in both data sets, the profile of these injuries was different based on gender, age, location, and road user. The results suggest that the ‘hospitalisation’ severity category used by police may not reflect true hospitalisations in all cases. Further, it highlights the wide variety of severity levels within hospitalised cases that are not captured by the current police-reported definitions. While a data linkage study is required to confirm these results, they highlight that a reliance on police-reported serious traffic injury data alone could result in inaccurate estimates of the impact and cost of crashes and lead to a misallocation of valuable resources.
Resumo:
Objective Evaluate the effectiveness and robustness of Anonym, a tool for de-identifying free-text health records based on conditional random fields classifiers informed by linguistic and lexical features, as well as features extracted by pattern matching techniques. De-identification of personal health information in electronic health records is essential for the sharing and secondary usage of clinical data. De-identification tools that adapt to different sources of clinical data are attractive as they would require minimal intervention to guarantee high effectiveness. Methods and Materials The effectiveness and robustness of Anonym are evaluated across multiple datasets, including the widely adopted Integrating Biology and the Bedside (i2b2) dataset, used for evaluation in a de-identification challenge. The datasets used here vary in type of health records, source of data, and their quality, with one of the datasets containing optical character recognition errors. Results Anonym identifies and removes up to 96.6% of personal health identifiers (recall) with a precision of up to 98.2% on the i2b2 dataset, outperforming the best system proposed in the i2b2 challenge. The effectiveness of Anonym across datasets is found to depend on the amount of information available for training. Conclusion Findings show that Anonym compares to the best approach from the 2006 i2b2 shared task. It is easy to retrain Anonym with new datasets; if retrained, the system is robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
Meibum is believed to be the major source of tear film lipids, which are vital in the prevention of excess evaporation of the aqueous phase. The complete lipid composition of meibum has yet to be established. While earlier studies reported the presence of phospholipids in human meibum, recent mass spectrometric studies have not detected them. In this study we use electrospray ionisation tandem mass spectrometry to investigate the presence of phospholipids in meibum and provide comparison to the phospholipid profile of tears.Lipids were extracted from human meibum and tear samples using standard biphasic methods and analysed by nano-electrospray ionisation tandem mass spectrometry using targeted ion scans. A total of 35 choline-containing phospholipids were identified in meibum and the profile of these was similar to that observed in tears, suggesting tear lipids are derived from meibum. The results shown here highlight the need for a combination of optimised techniques to enable the identification of the large range of lipid classes in meibum. © 2011 Elsevier Ltd.
Resumo:
This study explored how the social context influences the stress-buffering effects of social support on employee adjustment. It was anticipated that the positive relationship between support from colleagues and employee adjustment would be more marked for those strongly identifying with their work team. Furthermore, as part of a three-way interactive effect, it was predicted that high identification would increase the efficacy of coworker support as a buffer of two role stressors (role overload and role ambiguity). One hundred and 55 employees recruited from first-year psychology courses enrolled at two Australian universities were surveyed. Hierarchical multiple regression analyses revealed that the negative main effect of role ambiguity on job satisfaction was significant for those employees with low levels of team identification, whereas high team identifiers were buffered from the deleterious effect of role ambiguity on job satisfaction. There also was a significant interaction between coworker support and team identification. The positive effect of coworker support on job satisfaction was significant for high team identifiers, whereas coworker support was not a source of satisfaction for those employees with low levels of team identification. A three-way interaction emerged among the focal variables in the prediction of psychological well-being, suggesting that the combined benefits of coworker support and team identification under conditions of high demand may be limited and are more likely to be observed when demands are low.
Resumo:
Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.
Resumo:
This study developed a comprehensive research methodology for identification and quantification of sources responsible for pollutant build-up and wash-off from urban road surfaces. The study identified soil and asphalt wear, and non-combusted diesel fuel as the most influential sources for metal and hydrocarbon pollution respectively. The study also developed mathematical models to relate contributions from identified sources to underlying site specific factors such as land use and traffic. Developed mathematical model will play a key role in urban planning practices, enabling the implementation of effective water pollution control strategies.
Resumo:
This paper reports on a Leptospira isolate of bovine origin and its identification as belonging to a previously unknown serovar, for which the name Topaz is proposed. The isolate (94-79970/3) was cultured from bovine urine from a north Queensland dairy farm in Australia. Strain 94-79970/3 grew at 30 °C in Ellinghausen McCullough Johnson Harris (EMJH) medium but failed to grow at 13 °C in EMJH medium or in the presence of 8-azaguanine. Serologically, strain 94-79970/3 produced titres against the Leptospira borgpetersenii serovar Tarassovi, the reference strain for the Tarassovi serogroup; however, no significant titres to any other serovars within the serogroup were obtained. Using 16S rRNA and DNA gyrase subunit B gene analysis, strain 94-79970/3 was identified as a member of the species Leptospira weilii. We propose that the serovar be named Topaz, after the location where the original isolate was obtained. The reference strain for this serovar is 94-79970/ 3 (=KIT 94-79970/35LT722).
Resumo:
Fiji leaf gall (FLG) caused by Sugarcane Fiji disease virus (SCFDV) is transmitted by the planthopper Perkinsiella saccharicida. FLG is managed through the identification and exploitation of plant resistance. The glasshouse-based resistance screening produced inconsistent transmission results and the factors responsible for that are not known. A series of glasshouse trials conducted over a 2-year period was compared to identify the factors responsible for the erratic transmission results. SCFDV transmission was greater when the virus was acquired by the vector from a cultivar that was susceptible to the virus than when the virus was acquired from a resistant cultivar. Virus acquisition by the vector was also greater when the vector was exposed to the susceptible cultivars than when exposed to the resistant cultivar. Results suggest that the variation in transmission levels is due to variation in susceptibility of sugarcane cultivars to SCFDV used for virus acquisition by the vector.
Resumo:
Aberrant glycosylation of proteins is a hallmark of tumorigenesis, and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is non-invasive, technically straightforward and the sample collection and storage is relatively easy. Although, differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimised a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analysed with LC-MS/MS to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.
Resumo:
Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent diseases, such as breast and prostate cancers, osteoporosis, and cardiovascular disease. Soy is a rich source of isoflavones, diphenolic plant compounds that have been shown to possess several biological activities. Soy is not part of the traditional Western diet, but many dietary supplements are commercially available in order to provide the proposed beneficial health effects of isoflavones without changing the original diet. These supplements are usually manufactured from extracts of soy or red clover, which is another important source of isoflavones. However, until recently, detailed studies of the metabolism of these compounds in humans have been lacking. The aim of this study was to identify urinary metabolites of isoflavones originating from soy or red clover using gas chromatography - mass spectrometry (GC-MS). To examine metabolism, soy and red clover supplementation studies with human volunteers were carried out. In addition, the metabolism of isoflavones was investigated in vitro by identification of metabolites formed during a 24-h fermentation of pure isoflavones with a human fecal inoculum. Qualitative methods for identification and analysis of isoflavone metabolites in urine and fecal fermentation samples by GC-MS were developed. Moreover, a detailed investigation of fragmentation of isoflavonoids in electron ionization mass spectrometry (EIMS) was carried out by means of synthetic reference compounds and deuterated trimethylsilyl derivatives. After isoflavone supplementation, 18 new metabolites of isoflavones were identified in human urine samples. The most abundant urinary metabolites of soy isoflavones daidzein, genistein, and glycitein were found to be the reduced metabolites, i.e. analogous isoflavanones, a-methyldeoxybenzoins, and isoflavans. Metabolites having additional hydroxyl and/or methoxy substituents, or their reduced analogs, were also identified. The main metabolites of red clover isoflavones formononetin and biochanin A were identified as daidzein and genistein. In addition, reduced and hydroxylated metabolites of formononetin and biochanin A were identified; however, they occurred at much lower levels in urine samples than daidzein or genistein or their reduced metabolites. The results of this study show that the metabolism of isoflavones is diverse. More studies are needed to determine whether the new isoflavonoid metabolites identified here have biological activities that contribute to the proposed beneficial effects of isoflavones on human health. Another task is to develop validated quantitative methods to determine the actual levels of isoflavones and their metabolites in biological matrices in order to assess the role of isoflavones in prevention of chronic diseases.