1000 resultados para Soot combustion mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the mechanism of detonation to quasi-detonation transition was discussed, a new physical model to simulate quasi-detonation was proposed, and one-dimensional theoretical and numerical simulation was conducted. This study firstly demonstrates that the quasi-detonation is of thermal choking. If the conditions of thermal choking are created by some disturbances, the supersonic flow is then unable to accept additional thermal energy, and the CJ detonation becomes the unstable quasi-detonation precipitately. The kinetic energy loss caused by this transition process is firstly considered in this new physical model. The numerical results are in good agreement with previous experimental observations qualitatively, which demonstrates that the quasi-detonation model is physically correct and the study are fundamentally important for detonation and supersonic combustion research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of combination between a trace of halogenated compounds (such as ferric chloride and ammonium bromide) and Ni2O3 particles on the carbonization of polypropylene (PP) was investigated during combustion. The results showed a synergistic catalysis of combined halogenated compounds with Ni2O3 in promoting the formation of the residual char during combustion. The investigation on the promotion mechanism showed that halide radical releasing from halogen-containing additives worked as a catalyst to accelerate dehydrogenation-aromatization of degradation products of PR which promote the degradation products to form the residual char catalyzed by nickel catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe-Ni-O samples, with Fe/Ni ratio ranging from 2 to 1/3, were synthesized. Samples synthesized with and without citric acid in the precursor were compared and it was found that the addition of citric acid is the necessary condition for FeNi3 formation; it was found that FeNi3 alloys were formed in these samples even when calcined in an air atmosphere. X-ray diffraction and X-ray photoelectron spectroscopy measurements were used to characterize the samples. Because of the existence of FeNi3 alloys, Fe-Ni-O samples showed strong reactivity to NO and NO + O-2 but were inert to O-2 alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction mechanism of CO and Fe2O3 in a chemical-looping combustion (CLC) was studied based on density functional theory (DFT) at B3LYP level in this paper. The structures of all reactants, intermediate, transition structures and products of this reaction had been optimized and characterized. The reaction path was validated by means of the intrinsic reaction coordinate (IRC) approach. The result showed that the reaction was divided into two steps, the adsorbed CO molecule on Fe 2O3 surface formed a medium state with one broken Fe-O bond in step1, and in step2, O atom broken here oxidized a subsequent CO molecule in the fuel reactor. Thus, Fe2O3 molecule transport O from air to oxide CO continually in the CLC process. The activation energy and rate coefficients of the two steps were also obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Er(3)Al(5)O(12) phosphor powders were prepared using the solution combustion method. Formation and homogeneity of the Er(3)Al(5)O(12) phosphor powders have been verified by X-ray diffraction and energy-dispersive X-ray analysis respectively. The frequency up-conversion from Er(3)Al(5)O(12) phosphor powder corresponding to the (2)H(9/2) -> (4)I(15/2), (2)H(11/2) -> (4)I(15/2), (4)S(3/2) -> (4)I(15/2), (4)F(9/2) -> (4)I(15/2) and the infrared emission (IR) due to the (4)I(13/2) -> (4)I(15/2) transitions lying at similar to 410, similar to 524, similar to 556, 645-680 nm and at similar to 1.53 mu m respectively upon excitation with a Ti-Sapphire pulsed/CW laser have been reported. The mechanism responsible for the frequency up-conversion and IR emission is discussed in detail. Defect centres induced by radiation were studied using the techniques of thermoluminescence and electron spin resonance. A single glow peak at 430A degrees C is observed and the thermoluminescence results show the presence of a defect center which decays at high temperature. Electron spin resonance studies indicate a center characterized by a g-factor equal to 2.0056 and it is observed that this center is not related to the thermoluminescence peak. A negligibly small concentration of cation and anion vacancies appears to be present in the phosphor in accordance with the earlier theoretical predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incomplete combustion of biomass is one of the most important sources of emissions of organic compounds into the atmosphere, like polycyclic aromatic hydrocarbons (PAHs) which show genotoxic activity. Since environmental samples generally contain interferents and trace amounts of PAHs of interest, concentration and clean-up procedures are usually required prior to the final chromatographic analysis. This paper discusses the performance of Sep-Pak cartridges (silica gel and RP18) on clean-up of sugar cane soot extract. The best results were obtained with a silica Sep-Pak cartridge. The recoveries ranged from 79% (benzo[b]fluoranthene) to 113% (benzo[e]pyrene). (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass burning is an important primary and secondary source of aerosol particles. The presence of carbonaceous particles in the respirable size range makes the study of this fraction important in view of possible health and climatic effects. The annual burning of sugar cane plantations causes emission of huge amounts of pyrogenic particles. Aerosol samples were collected in Araraquara city, São Paulo state, Brazil, during the harvest season for fine and coarse particles and bulk; they were analysed by electron-probe microanalysis, including facilities for low-Z element determination (low-Z EPMA) and by energy-dispersive X-ray fluorescence (EDXRF), in order to investigate the elemental composition of individual particles and bulk samples, respectively. Numerical analysis of the EPMA results by hierarchical clustering shows high contributions of carbonaceous particles that can be distinguished mainly in two different types: biogenic and carbon-rich. Additionally, two significant contributions of aluminosilicate particles were identified: as rather pure aluminosilicates or mixed with carbonaceous species. The EDXRF results are compatible with those of aerosol particles in Amazon, which is nowadays one of the main sources of biogenic particles in the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulsating combustion process has attracted interest in current research because its application in energy generation can offer several advantages, such as fuel economy, reduced pollutants formation, increased rate of convective heat transfer and reduced investment, when compared with other new techniques of combustion. An experimental study has been conducted with the objective of investigating the effects of combustion driven acoustic oscillations in the emission rates of combustion gases, especially carbon monoxide and nitrogen oxides, and soot presence in partial premixed flames in confined partially premixed liquefied petroleum gas flames. The results basically showed that a more uniform fuel/air mixture due to the presence of an acoustic field increases the NOx emissions in operations close to stoichiometric equivalence ratios and the frequency is the most important parameter. Carbon monoxide and soot reduced significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased fuel economy and driveability of modern internal combustion engine vehicles (ICEVs) are the result of the application of advanced digital electronics to control the operation of the internal combustion engine (ICE). Microprocessors (and micro controllers) play a key role in the engine control, by precisely controlling the amount of both air and fuel admitted into the cylinders. Air intake is controlled by utilizing a throttle valve equipped with a motor and gear mechanism as actuator, and a sensor enabling the measurement of the angular position of the blades. This paperwork presents a lab setup that allows students to control the throttle position using a microcontroller that runs a program developed by them. A commercial throttle body has been employed, whereas a power amplifier and a microcontroller board have been hand assembled to complete the experimental setup. This setup, while based in a high-tech, microprocessor-based solution for a real-world, engine operation optimization problem, has the potential to engage students around a hands-on multidisciplinary lab activity and ignite their interest in learning fundamental and advanced topics of microprocessors systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on emissions of unburned hydrocarbon species from batch combustion of fixed beds of coal, sugar-cane bagasse, and blends thereof in a pre-heated two-stage laboratory furnace operated in the temperature range of 800-1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on emissions of pollutants were assessed. Furnace effluents were analyzed for products of incomplete combustion (PICs) including CO, volatile and semi-volatile hydrocarbons, and particulate matter, as has been reported in Ref. [1]. Emitted unburned hydrocarbons include traces of potentially health-hazardous Polycyclic Aromatic Hydrocarbons (PAHs), which are the focus of this work. Under the batch combustion conditions implemented herein, PAH were only generated during the volatile combustion phase of the fuels. The most prevalent species were in descending order: naphthalene, acenaphthylene, phenanthrene, fluoranthene, pyrene, dibenzofuran, benzofuran, byphenyl, fluorene, 9H-fluoren-9-one, acephenantrylene, benzo[b] fluoranthene, 1-methyl-naphthalene; 2-methyl-naphthalene, benz[a] anthracene and benzo[a] pyrene. PAH yields were the highest from combustion of neat bagasse. Combustion of the blends resulted in lower yields of PAH, than combustion of either of their neat fuel constituents. Increasing the furnace operating temperature enhanced the PAH emissions from bagasse, but had little effect on those from the coal or from the blends. Flue gas treatment in a secondary-stage furnace, upon with additional air, typically reduced PAH yields by promoting oxidation of the primary-stage furnace effluents. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.