991 resultados para Solution-processed
Resumo:
Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.
During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.
It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.
In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.
Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.
Resumo:
Gd-Ba-Cu-O (GdBCO) single grains have been previously melt-processed successfully in air using a generic Mg-Nd-Ba-Cu-O (Mg-NdBCO) seed crystal. Previous research has revealed that the addition of a small amount of BaO 2 to the precursor powders prior to melt processing can suppress the formation of Gd/Ba solid solution, and lead to a significant improvement in superconducting properties of the single grains. Research into the effects of a higher Ba content on single grain growth, however, has been limited by the relatively small grain size in the earlier studies. This has been addressed by developing Ba-rich precursor compounds Gd-163 and Gd-143, fabricated specifically to enable the presence of greater concentrations of Ba during the melt process. In this study, we propose a new processing route for the fabrication of high performance GdBCO single grain bulk superconductors in air by enriching the precursor powder with these new Ba rich compounds. The influence of the addition of the new compounds on the microstructures and superconducting properties of GdBCO single grains is reported. © 2008 IOP Publishing Ltd.
Resumo:
Electrochemical redox behavior of noradrenaline in alkaline solution on a glassy carbon electrode has been investigated by in situ UV-vis and CD spectroelectrochemistry by using a long optical path thin-layer cell. The experimental data were processed by using a double logarithmic method of analysis together with nonlinear regression which confirmed that the first step in both the oxidation of noradrenaline and reduction of noradrenochrome is a two-electron irreversible process governed by an EE mechanism. The kinetic parameters of the electrode reactions, i.e., charge transfer coefficient and the number of electrons transferred, alpha(1)n(1) = 0.11 and alpha(2)n(2) = 0.23, formal potentials modified with kinetics, E-1(0') = 0.65 (+/- 0.01) V and E-2(0') = 0.72V and standard rate cnstants, k(1)(0) = 7.0(+/-0.5)x10(-5) cm s(-1), for the first and second steps in the oxidation process of noradrenaline, and similarly, alpha(1)n(1) = 0.33, alpha(2)n(2) = 0.58, E-1(0') = 0.37(+/-0.01) V, E-0' = -0.25 (+/-0.01) V and k(1)(0) approximate to k(2)(0) = 1.06 (+/-0.05)x10(-4) cm s(-1) for the first and second steps in the reduction process of noradrenochrome were also determined.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tin dioxide nanoparticle suspensions were synthesized at room temperature by the hydrolysis reaction of tin chloride (II) dissolved in ethanol. The effect of the initial tin (II) ion concentration, in the ethanolic solution, on the mean particle size of the nanoparticles was studied. The Sn2+ concentration was varied from 0.0025 to 0.1 M, and all other synthesis parameters were kept fixed. Moreover, an investigation of the effect of agglomeration on the nanoparticle characteristics (i.e., size and morphology) was also done by modifying the pH of the SnO2 suspensions. The different samples were characterized by transmission electron microscopy, optical absorption spectroscopy in the ultraviolet range, and photoluminescence measurements. The results show that higher initial ion concentrations and agglomeration lead to larger nanoparticles. The concentration effect is explained by enhanced growth due to a higher supersaturation of the liquid medium. However, it was observed that the agglomeration of the nanoparticles in suspension induce coarsening by the oriented-attachment mechanism.
Resumo:
A new class of inorganic-organic hybrid polymers could successfully been prepared by the combination of different polymerization techniques. The access to a broad range of organic polymers incorporated into the hybrid polymer was realized using two independent approaches.rnIn the first approach a functional poly(silsesquioxane) (PSSQ) network was pre-formed, which was capable to initiate a controlled radical polymerization to graft organic vinyl-type monomers from the PSSQ precursor. As controlled radical polymerization techniques atom transfer radical polymerization (ATRP), as well as reversible addition fragmentation chain transfer (RAFT) polymerization could be used after defined tuning of the PSSQ precursor either toward a PSSQ macro-initiator or to a PSSQ macro-chain-transfer-agent. The polymerization pathway, consisting of polycondensation of trialkoxy-silanes followed by grafting-from polymerization of different monomers, allowed synthesis of various functional hybrid polymers. A controlled synthesis of the PSSQ precursors could successfully be performed using a microreactor setup; the molecular weight could be adjusted easily while the polydispersity index could be decreased well below 2.rnThe second approach aimed to incorporate differently derived organic polymers. As examples, polycarbonate and poly(ethylene glycol) were end-group-modified using trialkoxysilanes. After end-group-functionalization these organic polymers could be incorporated into a PSSQ network.rnThese different hybrid polymers showed extraordinary coating abilities. All polymers could be processed from solution by spin-coating or dip-coating. The high amount of reactive silanol moieties in the PSSQ part could be cross-linked after application by annealing at 130° for 1h. Not only cross-linking of the whole film was achieved, which resulted in mechanical interlocking with the substrate, also chemical bonds to metal or metal oxide surfaces were formed. All coating materials showed high stability and adhesion onto various underlying materials, reaching from metals (like steel or gold) and metal oxides (like glass) to plastics (like polycarbonate or polytetrafluoroethylene).rnAs the material and the synthetic pathway were very tolerant toward different functionalities, various functional monomers could be incorporated in the final coating material. The incorporation of N-isopropylacrylamide yielded in temperature-responsive surface coatings, whereas the incorporation of redox-active monomers allowed the preparation of semi-conductive coatings, capable to produce smooth hole-injection layers on transparent conductive electrodes used in optoelectronic devices.rnThe range of possible applications could be increased tremendously by incorporation of reactive monomers, capable to undergo fast and quantitative conversions by polymer-analogous reactions. For example, grafting active esters from a PSSQ precursor yielded a reactive surface coating after application onto numerous substrates. Just by dipping the coated substrate into a solution of a functionalized amine, the desired function could be immobilized at the interface as well as throughout the whole film. The obtained reactive surface coatings could be used as basis for different functional coatings for various applications. The conversion with specifically tuned amines yielded in surfaces with adjustable wetting behaviors, switchable wetting behaviors or as recognition element for surface-oriented bio-analytical devices. The combination of hybrid materials with orthogonal reactivities allowed for the first time the preparation of multi-reactive surfaces which could be functionalized sequentially with defined fractions of different groups at the interface. rnThe introduced concept to synthesis functional hybrid polymers unifies the main requirements on an ideal coating material. Strong adhesion on a wide range of underlying materials was achieved by secondary condensation of the PSSQ part, whereas the organic part allowed incorporation of various functionalities. Thus, a flexible platform to create functional and reactive surface coatings was achieved, which could be applied to different substrates. rn
Resumo:
W–2Ti and W–1TiC alloys were produced by mechanical alloying and consolidation by hot isostatic pressing. The composition and microstructural characteristics of these alloys were studied by X-ray diffraction, energy dispersion spectroscopy and scanning electron microscopy. The mechanical behavior of the consolidated alloys was characterized by microhardness measurements and three point bending tests. The mechanical characteristics of the W–2Ti alloy appear to be related to solution hardening. In W–1TiC, the residual porosity should be responsible for the poor behavior observed in comparison with W–2Ti.
Bottleneck Problem Solution using Biological Models of Attention in High Resolution Tracking Sensors
Resumo:
Every high resolution imaging system suffers from the bottleneck problem. This problem relates to the huge amount of data transmission from the sensor array to a digital signal processing (DSP) and to bottleneck in performance, caused by the requirement to process a large amount of information in parallel. The same problem exists in biological vision systems, where the information, sensed by many millions of receptors should be transmitted and processed in real time. Models, describing the bottleneck problem solutions in biological systems fall in the field of visual attention. This paper presents the bottleneck problem existing in imagers used for real time salient target tracking and proposes a simple solution by employing models of attention, found in biological systems. The bottleneck problem in imaging systems is presented, the existing models of visual attention are discussed and the architecture of the proposed imager is shown.
Resumo:
People, animals and the environment can be exposed to multiple chemicals at once from a variety of sources, but current risk assessment is usually carried out based on one chemical substance at a time. In human health risk assessment, ingestion of food is considered a major route of exposure to many contaminants, namely mycotoxins, a wide group of fungal secondary metabolites that are known to potentially cause toxicity and carcinogenic outcomes. Mycotoxins are commonly found in a variety of foods including those intended for consumption by infants and young children and have been found in processed cereal-based foods available in the Portuguese market. The use of mathematical models, including probabilistic approaches using Monte Carlo simulations, constitutes a prominent issue in human health risk assessment in general and in mycotoxins exposure assessment in particular. The present study aims to characterize, for the first time, the risk associated with the exposure of Portuguese children to single and multiple mycotoxins present in processed cereal-based foods (CBF). Portuguese children (0-3 years old) food consumption data (n=103) were collected using a 3 days food diary. Contamination data concerned the quantification of 12 mycotoxins (aflatoxins, ochratoxin A, fumonisins and trichothecenes) were evaluated in 20 CBF samples marketed in 2014 and 2015 in Lisbon; samples were analyzed by HPLC-FLD, LC-MS/MS and GC-MS. Daily exposure of children to mycotoxins was performed using deterministic and probabilistic approaches. Different strategies were used to treat the left censored data. For aflatoxins, as carcinogenic compounds, the margin of exposure (MoE) was calculated as a ratio of BMDL (benchmark dose lower confidence limit) to the aflatoxin exposure. The magnitude of the MoE gives an indication of the risk level. For the remaining mycotoxins, the output of exposure was compared to the dose reference values (TDI) in order to calculate the hazard quotients (ratio between exposure and a reference dose, HQ). For the cumulative risk assessment of multiple mycotoxins, the concentration addition (CA) concept was used. The combined margin of exposure (MoET) and the hazard index (HI) were calculated for aflatoxins and the remaining mycotoxins, respectively. 71% of CBF analyzed samples were contaminated with mycotoxins (with values below the legal limits) and approximately 56% of the studied children consumed CBF at least once in these 3 days. Preliminary results showed that children exposure to single mycotoxins present in CBF were below the TDI. Aflatoxins MoE and MoET revealed a reduced potential risk by exposure through consumption of CBF (with values around 10000 or more). HQ and HI values for the remaining mycotoxins were below 1. Children are a particularly vulnerable population group to food contaminants and the present results point out an urgent need to establish legal limits and control strategies regarding the presence of multiple mycotoxins in children foods in order to protect their health. The development of packaging materials with antifungal properties is a possible solution to control the growth of moulds and consequently to reduce mycotoxin production, contributing to guarantee the quality and safety of foods intended for children consumption.
Resumo:
Background: Bacillus thuringiensis Cry toxins bind with different insect midgut proteins leading to toxin oligomerization, membrane insertion and pore formation. However, different Cry toxins had been shown to readily form high molecular weight oligomers or aggregates in solution in the absence of receptor interaction. The role of Cry oligomers formed in solution remains uncertain. The Cry9A proteins show high toxicity against different Lepidoptera, and no-cross resistance with Cry1A. Results: Cry9Aa655 protein formed oligomers easily in solution mediated by disulfide bonds, according to SDS-PAGE analysis under non-reducing and reducing conditions. However, oligomerization is not observed if Cry9Aa655 is activated with trypsin, suggesting that cysteine residues, C14 and C16, located in the N-terminal end that is processed during activation participate in this oligomerization. To determine the role of these residues on oligomerization and in toxicity single and double alanine substitution were constructed. In contrast to single C14A and C16A mutants, the double C14A–C16A mutant did not form oligomers in solution. Toxicity assays against Plutella xylostella showed that the C14A–C16A mutant had a similar insecticidal activity as the Cry9Aa655 protein indicating the oligomers of Cry9Aa formed in solution in the absence of receptor binding are not related with toxicity. Conclusions: The aggregation of Cry9Aa655 polypeptides was mediated by disulfide bonds. Cry9Aa655 C14 and C16C are involved in oligomerization in solution. These aggregate forms are not related to the mode of action of Cry9Aa leading to toxicity.
Resumo:
Abstract. The objective of this research was to evaluate the hydrolyzed chicken feather based on pepsin digestibility and nutrient content, after physico-chemical and biological process. It was carried out by experimental methods at feed and nutrition laboratory. The treatments were hydrolyzed feather meals immersed in 0.5% NaOH and Na2S solution for 0, 2, 4, 6 and 8 hours, each treatment was repeated three times. The results showed that chemical treatment (NaOH-Na2S) in various time of incubation at 60oC followed by fermentation using Bacillus sp. MTS at 37oC for four days decreased the protein of hydrolyzed feather (78.88 to 73.06%), but increased the keratin fiber (1.9 to 3.26%). Pepsin digestibility informed that the increasing incubation time from 0, 2, 4, 6 to 8 hours resulted in higher solubility than that of control (30.2% at 8 hours vs 15.4% at 0 hours). Processing chicken feather by  0.5% NaOH and Na2S solution at 60oC for 6 hours followed by fermentation increased the value of pepsin digestibility.  Key words: hydrolyzed, Bacillus sp. MTS, feather, solubility Abstrak. Penelitian ini bertujuan mengevaluasi kualitas nutrien tepung bulu ayam hasil proses hidrolisis secara fisiko-kimia dan biologis menggunakan Bacillus sp. MTS. Metode eksperimental digunakan dalam penelitian yang menggunakan dua tahap proses hidrolisis yaitu tahap 1: setelah perebusan bulu dalam larutan NaOH maka bulu direndam dalam larutan 0.5% NaOH dan Na2S pada 600C dan tahap 2: fermentasi bulu selama empat hari pada suhu 370C. Perlakuan berupa waktu inkubasi yaitu 0, 2, 4, 6 dan 8 jam diterapkan pada tahap kedua dengan ulangan sebanyak tiga kali. Perlakuan fisiko-kimia yang dilanjutkan fermentasi menggunakan bakteri spesifik penghasil enzim-enzim pendegradasi keratin bulu menurunkan kadar protein tepung bulu  (78,88% menjadi 73,06%) dan meningkatkan kadar serat tepung bulu (1,9 menjadi 3,26%). Uji kelarutan protein tepung bulu dalam pepsin menginfromasikan bahwa proses tahap 1 menghasilkan nilai kelarutan protein tepung bulu yang meningkat dua kali dibanding kontrol (30,2% pada 8 jam vs 15,4% pada 0 jam inkubasi) atau enam kali dibanding tepung bulu tanpa hidrolisis (5%). Pengolahan bulu ayam menggunakan cara pemanasan, perendaman dalam larutan NaOH dan Na2S selama 6 jam pada 600C serta fermentasi menghasilkan tepung bulu dengan daya larut dalam pepsin lebih baik dibanding tanpa pengolahan.  Kata kunci: hidrolisis, tepung-bulu, Bacillus sp. MTS, kelarutan
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.