863 resultados para Solid-state NMR spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative branch determination in polyolefins by solid- and melt-state 13C NMR has been investigated. Both methods were optimised toward sensitivity per unit time. While solid-state NMR was shown to give quick albeit only qualitative results, melt-state NMR allowed highly time efficient accurate branch quantification. Comparison of spectra obtained using spectrometers operating at 300, 500 and 700 MHz 1H Larmor frequency, with 4 and 7~mm MAS probeheads, showed that the best sensitivity was achieved at 500 MHz using a 7 mm 13C-1H optimised high temperature probehead. For materials available in large quantities, static melt-state NMR, using large diameter detection coils and high coil filling at 300 MHz, was shown to produce comparable results to melt-state MAS measurements in less time. While the use of J-coupling mediated polarisation transfer techniques was shown to be possible, direct polarisation via single-pulse excitation proved to be more suitable for branch quantification in the melt-state. Artificial line broadening, introduced by FID truncation, was able to be reduced by the use of π pulse-train heteronuclear dipolar decoupling. This decoupling method, when combined with an extended duty-cycle, allowed for significant improvement in resolution. Standard setup, processing and analysis techniques were developed to minimise systematic errors contributing to the measured branch contents. The final optimised melt-state MAS NMR method was shown to allow time efficient quantification of comonomer content and distribution in both polyethylene- and polypropylene-co-α-olefins. The sensitivity of the technique was demonstrated by quantifying branch concentrations of 8 branches per 100,000 CH2 for an industrial ‘linear’ polyethylene in only 13 hours. Even lower degrees of 3–8 long-chain branches per 100,000 carbons were able to be estimated in just 24 hours for a series of γ-irradiated polypropylene homopolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eine zielgerichtete Steuerung und Durchführung von organischen Festkörperreaktionen wird unter anderem durch genaue Kenntnis von Packungseffekten ermöglicht. Im Rahmen dieser Arbeit konnte durch den kombinierten Einsatz von Einkristallröntgenanalyse und hochauf-lösender Festkörper-NMR an ausgewählten Beispielen ein tieferes Verständnis und Einblicke in die Reaktionsmechanismen von organischen Festkörperreaktionen auf molekularer Ebene gewonnen werden. So konnten bei der topotaktischen [2+2] Photodimerisierung von Zimt-säure Intermediate isoliert und strukturell charakterisiert werden. Insbesondere anhand statischer Deuteronen- und 13C-CPMAS NMR Spektren konnten eindeutig dynamische Wasserstoffbrücken nachgewiesen werden, die transient die Zentrosymmetrie des Reaktions-produkts aufheben. Ein weiterer Nachweis gelang daraufhin mittels Hochtemperatur-Röntgen-untersuchung, sodass der scheinbare Widerspruch von NMR- und Röntgenuntersuchungen gelöst werden konnte. Eine Veresterung der Zimtsäure entfernt diese Wasserstoffbrücken und erhält somit die Zentrosymmetrie des Photodimers. Weiterhin werden Ansätze zur Strukturkontrolle in Festkörpern basierend auf der molekularen Erkennung des Hydroxyl-Pyridin (OH-N) Heterosynthon in Co-Kristallen beschrieben, wobei vor allem die Stabilität des Synthons in Gegenwart funktioneller Gruppen mit Möglichkeit zu kompetetiver Wasserstoffbrückenbildung festgestellt wurde. Durch Erweiterung dieses Ansatzes wurde die molekulare Spezifität des Hydroxyl-Pyridin (OH-N) Heterosynthons bei gleichzeitiger Co-Kristallisation mit mehreren Komponenten erfolgreich aufgezeigt. Am Beispiel der Co-Kristallisation von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res) in Gegenwart von trans-1,2-bis(4-pyridyl)ethan (bpet) konnten Zwischenprodukte der Fest-körperreaktionen und neuartige Polymorphe isoliert werden, wobei eine lückenlose Aufklärung des Reaktionswegs mittels Röntgenanalyse gelang. Dabei zeigte sich, dass das Templat Resorcinol aus den Zielverbindungen entfernbar ist. Ferner gelang die Durchführung einer seltenen, nicht-idealen Einkristall-Einkristall-Umlagerung von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res). In allen Fällen konnten die Fragen zur Struktur und Dynamik der untersuchten Verbindungen nur durch gemeinsame Nutzung von Röntgenanalyse und NMR-Spektroskopie bei vergleichbaren Temperaturen eindeutig und umfassend geklärt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state NMR spectra of natural abundance 13C in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26 was measured. When the quinone acceptors were removed and continuous visible illumination of the sample was provided, exceptionally strong nuclear spin polarization was observed in NMR lines with chemical shifts resembling those of the aromatic carbons in bacteriochlorophyll and bacteriopheophytin. The observation of spin polarized 15N nuclei in bacteriochlorophyll and bacteriopheophytin was previously demonstrated with nonspecifically 15N-labeled reaction centers. Both the carbon and the nitrogen NMR studies indicate that the polarization is developed on species that carry unpaired electrons in the early electron transfer steps, including the bacteriochlorophyll dimer donor P860 and probably the bacteriopheophytin acceptor. I. Both enhanced-absorptive and emissive polarization were seen in the carbon spectrum; most lines were absorptive but the methine carbons of the porphyrin ring (alpha, beta, gamma, ) exhibited emissive polarization. The change in the sign of the hyperfine coupling at these sites indicates the existence of nodes in the spin density distribution on the tetrapyrrole cofactors flanking each methine carbon bridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme immobilisation is the conversion of a soluble enzyme molecule into a solid particle form. This allows the recovery of the enzyme catalyst for its re-use and avoids protein contamination of the product streams. A better understanding of immobilised enzymes is necessary for their rational development. A more rational design can help enormously in the applicability of these systems in different areas, from biosensors to chemical industry. Immobilised enzymes are challenging systems to study and very little information is given by conventional biochemical analysis such as catalytic activity and amount of protein. Here, solid-state NMR has been applied as the main technique to study these systems and evaluate them more precisely. Various approaches are presented for a better understanding of immobilised enzymes, which is the aim of this thesis. Firstly, the requirements of a model system of study will be discussed. The selected systems will be comprehensibly characterised by a variety of techniques but mainly by solid-state NMR. The chosen system will essentially be the enzyme α-chymotrypsin covalently immobilised on two functionalised inorganic supports – epoxide silica and epoxide alumina – and an organic support – Eupergit®. The study of interactions of immobilised enzymes with other species is vital for understanding the macromolecular function and for predicting and engineering protein behaviour. The study of water, ions and inhibitors interacting with various immobilised enzyme systems is covered here. The interactions of water and sodium ions were studied by 17O and 23Na multiple-quantum techniques, respectively. Various pore sizes of the supports were studied for the immobilised enzyme in the presence of labelled water and sodium cations. Finally, interactions between two fluorinated inhibitors and the active site of the enzyme will be explored using 19F NMR, offering a unique approach to evaluate catalytic behaviour. These interactions will be explored by solution-state NMR firstly, then by solid-state NMR. NMR has the potential to give information about the state of the protein in the solid support, but the precise molecular interpretation is a difficult task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) and boron nitride both possess novel properties, the former associated with microporosity and the latter with good mechanical properties. We have synthesized composites of the imidazolate based MOF, ZIF-8, and few-layer BN in order to see whether we can incorporate the properties of both these materials in the composites. The composites so prepared between BN nanosheets and ZIF-8 have compositions ZIF-1BN, ZIF-2BN, ZIF-3BN and similar to ZIF-4BN. The composites have been characterized by PXRD, TGA, XPS, electron microscopy, IR, Raman and solid state NMR spectroscopy. The composites possess good surface areas, the actual value decreasing only slightly with the increase in the BN content. The CO2 uptake remains nearly the same in the composites as in the parent ZIF-8. More importantly, the addition of BN markedly improves the mechanical properties of ZIF-8, a feature that is much desired in MOFs. Observation of microporous features along with improved mechanical properties in a MOF is indeed noteworthy. Such manipulation of properties can be profitably exploited in practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecularly Imprinted Polymers (MIPs) targeting shikonin, a potent antioxidant and wound healing agent, have been prepared using methacrylic acid (MAA) and 2-diethylaminoethyl methacrylate (DEAEMA) as functional monomers. An investigation of solution association between shikonin and both acidic and basic functional monomers by UV-Vis titrations, suggested stronger affinity towards the basic functionality. Strong inhibition of the co-polymerisation reaction of such basic monomers was observed, but was overcome by reduction of the amount of template used during polymer synthesis. Polymer morphology was severely impacted by the template’s radical scavenging behaviour as demonstrated by solid state NMR spectroscopy measurements. HPLC evaluation of the final materials in polar conditions revealed limited imprinting effects and selectivity, with the MAA polymers exhibiting marginally better performance. During application of the polymers as MI-SPE sorbents in non-polar solvents it was found that the DEAEMA based polymer was more selective towards shikonin compared to the MAA counterpart, while shikonin recoveries of up to 72% were achieved from hexane solutions of a commercial sample of shikonin, hexane extract of Alkanna tinctoria roots and a commercial pharmaceutical ointment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conversion of plant biomass-derived carbohydrates (preferably non-edible) into added-value products is envisaged to be at the core of the future biorefineries. Carbohydrates are the most abundant natural organic polymers on Earth. This work deals with the chemical valorisation of plant biomass, focusing on the acid-catalysed conversion of carbohydrates (mono and polysaccharides) to furanic aldehydes, namely 2-furaldehyde (Fur) and 5-hydroxymethyl-2-furaldehyde (Hmf), which are valuable platform chemicals that have the potential to replace a variety of oil derived chemicals and materials. The investigated reaction systems can be divided into two types depending on the solvent used to dissolve the carbohydrates in the reaction medium: water or ionic liquid-based systems. The reaction temperatures were greater than 150 ºC when the solvent was water, and lower than 150 º C in the cases of the ionic liquid-based catalytic systems. As alternatives to liquid acids (typically used in the industrial production of Fur), solid acid catalysts were investigated in these reaction systems. Aiming at the identification of (soluble and insoluble) reaction products, complementary characterisation techniques were used namely, FT-IR spectroscopy, liquid and solid state NMR spectroscopy, TGA, DSC and GC´GC-ToFMS analyses. Complex mixtures of soluble reaction products were obtained and different types of side reactions may occur. The requirements to be put on the catalysts for these reaction systems partly depend on the type of carbohydrates to be converted and the reaction conditions used. The thermal stability is important due to the fact that formation of humins and catalyst coking phenomena are characteristically inherent to these types of reactions systems leading to the need to regenerate the catalyst which can be effectively accomplished by calcination. Special attention was given to fully inorganic nanoporous solid acids, amorphous or crystalline, and consisting of nano to micro-size particles. The investigated catalysts were silicoaluminophosphates, aluminosilicates and zirconium-tungsten mixed oxides which are versatile catalysts in that their physicochemical properties can be fine-tuned to improve the catalytic performances in the conversion of different substrates (e.g. introduction of mesoporosity and modification of the acid properties). The catalytic systems consisting of aluminosilicates as solid acids and water as solvent seem to be more effective in converting pentoses and related polysaccharides into Fur, than hexoses and related polysaccharides into Hmf. The investigated solid acids exhibited fairly good hydrothermal stabilities. On the other hand, ionic liquid-based catalytic systems can allow reaching simultaneously high Fur and Hmf yields, particularly when Hmf is obtained from D-fructose and related polysaccharides; however, catalyst deactivation occurs and the catalytic reactions take place in homogeneous phase. As pointed out in a review of the state of the art on this topic, the development of truly heterogeneous ionic liquid-based catalytic systems for producing Fur and Hmf in high yields remains a challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Zweikomponentensystem DcuSR reguliert die Expression der Gene der anaeroben Fumaratatmung in E. coli in Abhängigkeit von externen C4-Dicarbonsäuren. Die membranständige Histidinkinase DcuS detektiert den Reiz und leitet ihn über die Membran an den Responseregulaor DcuR weiter, der die Aktivität der Zielgene reguliert. Das Substratspektrum von DcuS wurde näher untersucht und strukturelle Eigenschaften der Substrate sowie ihre Affinität zu DcuS bestimmt. Es wird vermutet, dass Histidinkinasen im aktiven Zustand als Dimere oder höhere Oligomere vorliegen. Der Oligomerisierungszustand von DcuS in der Membran wurde mittels EPR-Spektroskopie untersucht. Es wurden funktionelle Cysteinmutanten von DcuS hergestellt, die nur an bestimmten Positionen der periplasmatischen Domäne Cysteinreste, aber sonst keine weiteren Cysteinreste, enthielten. Die Proteine wurden isoliert, über die Cysteinreste mit Nitroxiden markiert und in Liposomen rekonstituiert. Erste EPR-Messungen zeigten, dass rekonstituiertes DcuS in einem geordneten Zustand in der Membran vorliegt, der diskrete Abstände zwischen den Monomeren aufweist. Die Struktur von rekonstituiertem DcuS in der Membran soll durch Festkörper-NMR aufgeklärt werden. Ein geeignetes C-terminal verkürztes Konstrukt, DcuS-PD/PAS wurde zu diesem Zweck hergestellt. Das Protein ließ sich in hoher Reinheit isolieren und konnte wieder in Liposomen rekonstituiert werden. Vorbereitende NMR-Messungen zeigten, dass eine Strukturaufklärung an diesem Protein möglich ist. Weitere Strukturuntersuchungen werden zur Zeit durchgeführt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important property for devices is the charge-carrier mobility values for discotic organic materials like hexa-peri-hexabenzocoronenes. A close relation exists between the degree of their columnar self-arrangement of the molecules and their mobilities. Within this first step an induction of a higher order via hydrogen-bonding was considered, which mainly pointed towards the improvement of the intracolumnar stacking of the materials. For the analytics a broad range of methods was used including differential scanning calorimetry (DSC), wide-angle X-ray diffractometry (WAXS), solid-state NMR spectroscopy and scanning tunneling microscopy (STM). Indeed, a specific influence of the hydrogen-bonds could be identified, although in several cases by the cost of a severe reduction of solubility and processability. This effect was dampened by the addition of a long alkyl chain next to the hydrogen-bond exerting functional group, which resulted in an improved columnar arrangement by retention of processability. In contrast to the before mentioned example of inducing a higher intracolumnar order by hydrogen-bonding, the focus was also be set upon larger aromatic systems. The charge-carrier mobility is also in close relation to the size of the aromatic core and larger π-areas are expected to lead to improved mobilities. For photovoltaic applications a high extinction coefficient over a broad range of the spectrum is favorable, which can also be achieved by enlarging the aromatic core component. In addition the stronger π-interactions between the aromatic core components should yield an improved columnar stability and order. However the strengthening of the π-interactions between the aromatic core components led to a reduction of the solubility and the processability due to the stronger aggregation of the molecules. This required the introduction of efficiently solubilizing features in terms of long alkyl chains in the corona of the aromatic entity, in combination of a distortion of the aromatic core moiety by bulky tert-butyl groups. By this approach not only the processing and cleaning of the materials with standard laboratory techniques became possible, but moreover the first structure-rich UV/vis and a resolved 1H-NMR spectra for an aromatic system two times larger than hexa-peri-hexabenzocoronene were recorded. The bulk properties in an extruded fiber as well as on the surface showed a columnar self-assembly including a phase in which a homeotropic alignment on a substrate was observed, which turns the material into an interesting candidate for future applications in electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.