986 resultados para Solar Activity


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work investigates the behavior of the sunspot number and Southern Oscillation Index (SOI) signal recorded in the tree ring time series for three different locations in Brazil: Humaita in Amaznia State, Porto Ferreira in So Paulo State, and Passo Fundo in Rio Grande do Sul State, using wavelet and cross-wavelet analysis techniques. The wavelet spectra of tree ring time series showed signs of 11 and 22 years, possibly related to the solar activity, and periods of 2-8 years, possibly related to El Nio events. The cross-wavelet spectra for all tree ring time series from Brazil present a significant response to the 11-year solar cycle in the time interval between 1921 to after 1981. These tree ring time series still have a response to the second harmonic of the solar cycle (5.5 years), but in different time intervals. The cross-wavelet maps also showed that the relationship between the SOI x tree ring time series is more intense, for oscillation in the range of 4-8 years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the effects of a recently proposed 21st century Dalton minimum like decline of solar activity on the evolution of Earth's climate and ozone layer. Three sets of two member ensemble simulations, radiatively forced by a midlevel emission scenario (Intergovernmental Panel on Climate Change RCP4.5), are performed with the atmosphere-ocean chemistry-climate model AOCCM SOCOL3-MPIOM, one with constant solar activity, the other two with reduced solar activity and different strength of the solar irradiance forcing. A future grand solar minimum will reduce the global mean surface warming of 2 K between 1986–2005 and 2081–2100 by 0.2 to 0.3 K. Furthermore, the decrease in solar UV radiation leads to a significant delay of stratospheric ozone recovery by 10 years and longer. Therefore, the effects of a solar activity minimum, should it occur, may interfere with international efforts for the protection of global climate and the ozone layer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from C-14 and Be-10 records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Radiocarbon production, solar activity, total solar irradiance (TSI) and solar-induced climate change are reconstructed for the Holocene (10 to 0 kyr BP), and TSI is predicted for the next centuries. The IntCal09/SHCal04 radiocarbon and ice core CO2 records, reconstructions of the geomagnetic dipole, and instrumental data of solar activity are applied in the Bern3D-LPJ, a fully featured Earth system model of intermediate complexity including a 3-D dynamic ocean, ocean sediments, and a dynamic vegetation model, and in formulations linking radiocarbon production, the solar modulation potential, and TSI. Uncertainties are assessed using Monte Carlo simulations and bounding scenarios. Transient climate simulations span the past 21 thousand years, thereby considering the time lags and uncertainties associated with the last glacial termination. Our carbon-cycle-based modern estimate of radiocarbon production of 1.7 atoms cm−2 s−1 is lower than previously reported for the cosmogenic nuclide production model by Masarik and Beer (2009) and is more in-line with Kovaltsov et al. (2012). In contrast to earlier studies, periods of high solar activity were quite common not only in recent millennia, but throughout the Holocene. Notable deviations compared to earlier reconstructions are also found on decadal to centennial timescales. We show that earlier Holocene reconstructions, not accounting for the interhemispheric gradients in radiocarbon, are biased low. Solar activity is during 28% of the time higher than the modern average (650 MeV), but the absolute values remain weakly constrained due to uncertainties in the normalisation of the solar modulation to instrumental data. A recently published solar activity–TSI relationship yields small changes in Holocene TSI of the order of 1 W m−2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.16 W m−2. Related solar-induced variations in global mean surface air temperature are simulated to be within 0.1 K. Autoregressive modelling suggests a declining trend of solar activity in the 21st century towards average Holocene conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ice-core chemistry data from Victoria Lower Glacier, Antarctica, suggest, at least for the last 50 years, a direct influence of solar activity variations on the McMurdo Dry Valleys (MDV) climate system via controls on air-mass input from two competing environments: the East Antarctic ice sheet and the Ross Sea. During periods of increased solar activity, when total solar irradiance is relatively high, the MDV climate system appears to be dominated by air masses originating from the Ross Sea, leading to higher aerosol deposition. During reduced solar activity, the Antarctic interior seems to be the dominant air-mass source, leading to lower aerosol concentration in the ice-core record. We propose that the sensitivity of the MDV to variations in solar irradiance is caused by strong albedo differences between the ice-free MDV and the ice sheet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The abrupt Northern Hemispheric warming at the end of the twentieth century has been attributed to an enhanced greenhouse effect. Yet Greenland and surrounding subpolar North Atlantic remained anomalously cold in 1970s to early 1990s. Here we reconstructed robust Greenland temperature records (North Greenland Ice Core Project and Greenland Ice Sheet Project 2) over the past 2100 years using argon and nitrogen isotopes in air trapped within ice cores and show that this cold anomaly was part of a recursive pattern of antiphase Greenland temperature responses to solar variability with a possible multidecadal lag. We hypothesize that high solar activity during the modern solar maximum (approximately 1950s–1980s) resulted in a cooling over Greenland and surrounding subpolar North Atlantic through the slowdown of Atlantic Meridional Overturning Circulation with atmospheric feedback processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ~90-year Gleissberg and ~200-year de Vries cycles have been identified as two distinctive quasi-periodic components of Holocene solar activity. Evidence exists for the impact of such multi-decadal to centennial-scale variability in total solar irradiance (TSI) on climate, but concerning the ocean, this evidence is mainly restricted to the surface response. Here we use a comprehensive global climate model to study the impact of idealized solar forcing, representing the Gleissberg and de Vries cycles, on global ocean potential temperature at different depth levels, after a recent proxy record indicates a signal of TSI anomalies in the northeastern Atlantic at mid-depth. Potential impacts of TSI anomalies on deeper oceanic levels are climatically relevant due to their possible effect on ocean circulation by altering water mass characteristics. Simulated solar anomalies are shown to penetrate the ocean down to at least deep-water levels. Despite the fact that the two forcing periods differ only by a factor of ~2, the spatial pattern of response is significantly distinctive between the experiments, suggesting different mechanisms for solar signal propagation. These are related to advection by North Atlantic Deep Water flow (200-year forcing), and barotropic adjustment in the South Atlantic in response to a latitudinal shift of the westerly wind belt (90-year forcing).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar variability represents a source of uncertainty in the future forcings used in climate model simulations. Current knowledge indicates that a descent of solar activity into an extended minimum state is a possible scenario. With aid of experiments from a state-of-the-art Earth system model, we investigate the impact of a future solar minimum on Northern Hemisphere climate change projections. This scenario is constructed from recent 11 year solar-cycle minima of the solar spectral irradiance, and is therefore more conservative than the 'grand' minima employed in some previous modeling studies. Despite the small reduction in total solar irradiance (0.36 W m^-2), relatively large responses emerge in the winter Northern Hemisphere, with a reduction in regional-scale projected warming by up to 40%. To identify the origin of the enhanced regional signals, we assess the role of the different mechanisms by performing additional experiments forced only by irradiance changes at different wavelengths of the solar spectrum. We find that a reduction in visible irradiance drives changes in the stationary wave pattern of the North Pacific and sea-ice cover. A decrease in UV irradiance leads to smaller surface signals, although its regional effects are not negligible. These results point to a distinct but additive role of UV and visible irradiance in the Earth's climate, and stress the need to account for solar forcing as a source of uncertainty in regional scale projections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation that influences large-scale precipitation patterns and ocean circulation. Variations in their intensity and latitudinal position have been suggested to exert a strong influence on the CO2 budget in the Southern Ocean, thus making them a potential factor affecting the global climate. The possible influence of solar forcing on SWW variability during the Holocene is addressed. Solar sensitivity experiments with a comprehensive global climate model (CCSM3) are carried out to study the response of SWW to solar variability. In addition, It is shown that a high-resolution iron record from the Chilean continental slope (41° S), which is interpreted to reflect changes in the position of the SWW, is significantly correlated with reconstructed solar activity during the past 3000 years. Taken together, the proxy and model results suggest that centennial-scale periods of lower (higher) solar activity caused equatorward (southward) shifts of the annual mean SWW.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar activity indicators, each as sunspot numbers, sunspot area and flares, over the Sun’s photosphere are not considered to be symmetric between the northern and southern hemispheres of the Sun. This behavior is also known as the North-South Asymmetry of the different solar indices. Among the different conclusions obtained by several authors, we can point that the N-S asymmetry is a real and systematic phenomenon and is not due to random variability. In the present work, the probability distributions from the Marshall Space Flight Centre (MSFC) database are investigated using a statistical tool arises from well-known Non-Extensive Statistical Mechanics proposed by C. Tsallis in 1988. We present our results and discuss their physical implications with the help of theoretical model and observations. We obtained that there is a strong dependence between the nonextensive entropic parameter q and long-term solar variability presents in the sunspot area data. Among the most important results, we highlight that the asymmetry index q reveals the dominance of the North against the South. This behavior has been discussed and confirmed by several authors, but in no time they have given such behavior to a statistical model property. Thus, we conclude that this parameter can be considered as an effective measure for diagnosing long-term variations of solar dynamo. Finally, our dissertation opens a new approach for investigating time series in astrophysics from the perspective of non-extensivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of “nominal” solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

VHF nighttime scintillations, recorded during a high solar activity period at a meridian chain of stations covering a magnetic latitude belt of 3°–21°N (420 km subionospheric points) are analyzed to investigate the influence of equatorial spread F irregularities on the occurrence of scintillation at latitudes away from the equator. Observations show that saturated amplitude scintillations start abruptly about one and a half hours after ground sunset and their onset is almost simultaneous at stations whose subionospheric points are within 12°N latitude of the magnetic equator, but is delayed at a station whose subionospheric point is at 21°N magnetic latitude by 15 min to 4 hours. In addition, the occurrence of postsunset scintillations at all the stations is found to be conditional on their prior occurrence at the equatorial station. If no postsunset scintillation activity is seen at the equatorial station, no scintillations are seen at other stations also. The occurrence of scintillations is explained as caused by rising plasma bubbles and associated irregularities over the magnetic equator and the subsequent mapping of these irregularities down the magnetic field lines to the F region of higher latitudes through some instantaneous mechanism; and hence an equatorial control is established on the generation of postsunset scintillation-producing irregularities in the entire low-latitude belt.