993 resultados para Soil organic carbon pool


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans la dernière décennie, plusieurs hectares de terre agricole ont été convertis à la culture intensive sur courtes rotations (CICR) de saules dans le sud du Québec (Canada). Peu d’études ont été réalisées afin de déterminer comment se comporte la dynamique du carbone organique (Corg) dans le sol suivant cette conversion. Nous avons donc comparé la quantité du Corg et de deux pools labiles de carbone (carbone extractible à l’eau chaude et les sucres aminés) entre des CICR en phase initiale d’établissement (1-2 ans) et des parcelles appariées représentant le système de culture qui prévalait avant la transformation en culture de saules (culture fourragère) et d’autres cultures d’intérêt. La même chose a été faite pour une CICR en exploitation (depuis 9 ans) à un autre site. La quantité de Corg du sol n’était pas différente entre les CICR et les parcelles sous culture fourragère. Une plus haute concentration de sucres aminés dans le Corg total des CICR en établissement, par rapport aux autres parcelles sur le même site, permet de soupçonner que les perturbations liées à l’établissement ne mènent pas à une minéralisation accrue du Corg à court terme. La proportion de sucres aminés fongiques, qui diminue théoriquement lors de perturbations, était aussi plus élevée sous la plus jeune culture. Sous la CICR de neuf ans, le Corg était redistribué dans le profil vertical et les pools labiles étaient de plus petite taille (à une profondeur de 20-40 cm) comparativement à une parcelle témoin. La conversion d’une culture fourragère en plantation de saules en CICR n’a pas mené à la formation d’un puits de carbone. L’étude laisse entrevoir qu’un tel puits pourrait être créé si la conversion se faisait à partir d’un aménagement impliquant la culture en rotation de plantes annuelles et des labours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30); integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45); integrated crop-livestock with pasture height of 30 cm (CL30); integrated crop-livestock with pasture height of 45 cm (CL45) and native vegetation (NV). Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b) and penetration resistance (PR), and decreased total porosity (¦t) and macroporosity (¦ma), compared to NV. The values of r b (1.18-1.47 Mg m-3), ¦ma (0.14-0.17 m³ m-3) and PR (0.62-0.81 MPa) at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC) and the soil organic carbon pool (SOCpool). All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site-specific palaeo-records are needed. Here we present a multi-proxy study of a 350-cm-long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial to Holocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain-size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, d13Corg) and stable water isotopes (d18O, dD, d excess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre-lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22 800±280 cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11 800 cal. a BP (Unit B). At about 9000 cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060 cal. a BP, including post-drainage sediment freezing from the top down to 154 cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core-based reconstruction of multiple thermokarst lake generations since 11 800 cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice-rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst-affected regions of the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge on variations in vertical, horizontal and temporal characteristics of the soil chemical properties under eucalyptus stumps left in the soil is of fundamental importance for the management of subsequent crops. The objective of this work was to evaluate the effect of eucalyptus stumps (ES) left after cutting on the spatial variability of chemical characteristics in a dystrophic Yellow Argisol in the eastern coastal plain region of Brazil. For this purpose, ES left for 31 and 54 months were selected in two experimental areas with similar characteristics, to assess the decomposition effects of the stumps on soil chemical attributes. Soil samples were collected directly around these ES, and at distances of 30, 60, 90, 120 and 150 cm away from them, in the layers 0-10, 10-20 and 20-40 cm along the row of ES, which is in-between the rows of eucalyptus trees of a new plantation, grown at a spacing of 3 x 3 m. The soil was sampled in five replications in plots of 900 m² each and the samples analyzed for pH, available P and K (Mehlich-1), exchangeable Al, Ca and Mg, total organic carbon (TOC) and C content in humic substances (HS) and in the free light fraction. The pH values and P, K, Ca2+, Mg2+ and Al3+ contents varied between the soil layers with increasing distance from the 31 and 54-monthold stumps. The highest pH, P, K, Ca2+ and Mg2+ values and the lowest Al3+ content were found in the surface soil layer. The TOC of the various fractions of soil organic matter decreased with increasing distance from the 31 and 54-month-old ES in the 0-10 and 10-20 cm layers, indicating that the root (and stump) cycling and rhizodeposition contribute to maintain soil organic matter. The C contents of the free light fraction, of the HS and TOC fractions were higher in the topsoil layer under the ES left for 31 months due to the higher clay levels of this layer, than in those found under the 54-month-old stumps. However, highest C levels of the different fractions of soil organic matter in the topsoil layer reflect the deposition and maintenance of forest residues on the soil surface, mainly after forest harvest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.