986 resultados para Soil C
Do improved pastures affect enzymatic activity and C and N dynamics in soils of the montado system ?
Resumo:
Vast montado areas are threatened by degradation, as the result of a long history of land use changes. Since improved pastures have been installed aiming soil quality improvement and system sustainability, it is crucial to evaluate the effects of these management changes on soil organic matter status and soil biological activity, as soil quality indicators. Therefore, a 35-yr old improved pasture and a natural pasture were studied, considering areas beneath tree canopy and in the open. Total organic C, total N, hot water soluble (HWS) and particulate (POM) C, microbial biomass C (MBC) and N (MBN), C mineralization rate (CMR) and net N mineralization rate (NMR) were determined. In addition, for a 1-yr period, soil β-glucosidase, urease, proteases and acid phosphomonoesterase were periodically determined. Improved pasture promoted the increase of soil C and N through POM-C increment, particularly beneath the trees canopies. The two study pastures did not show differences regarding soil microbial biomass, but variations in CMR, HWS-C and N availability (proteases and urease activities) suggest divergent soil microbial communities. Tree regulator role on C, N and P transformation processes in soil was confirmed
Resumo:
ABSTRACT: Changes in carbon stocks in different compartments of soil organic matter of a clayey Latossolo Vermelho Distrófico (Typic Haplustox), caused by the substitution of native savanna vegetation (cerrado sensu stricto) by agroecosystems, were assessed after 31 years of cultivation. Under native vegetation, a stock of 164.5 Mg ha-1 C was estimated in the 0.00-1.00 m layer. After 31 years of cultivation, these changes in soil C stocks were detected to a depth of 0.60 m. In the case of substitution of cerrado sensu stricto by no-tillage soybean-corn rotation, a reduction of at least 11 % of the soil C pools was observed. However, the adoption of no-tillage as an alternative to tillage with a moldboard plow (conventional system) reduced CO2 emissions by up to 12 %.
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Resumo:
The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondonia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of NH4+, Na+, K+, Ca2+ Mg2+,, Cl-, NO3-, SO42- and DOC. The coefficient 3 4 cient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly tow compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall. patterns was Low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of ""hot"" and ""cold"" spots of throughfall. quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition -induced biochemical microhabitats in the soil. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A continuum of carbon, from atmospheric CO2 to secondary calcium carbonate, has been studied in a soil associ- ated with scree slope deposits in the Jura Mountains of Switzerland. This approach is based on former studies conducted in other environments. This C continuum includes atmospheric CO2, soil organic matter (SOM), soil CO2, dissolved inorganic carbon (DIC) in soil solutions, and secondary pedogenic carbonate. Soil parameters (pCO2, temperature, pH, Cmin and Corg contents), soil solution chemistry, and isotopic compositions of soil CO2, DIC, carbonate and soil organic matter (δ13CCO2, δ13CDIC, δ13Ccar and δ13CSOM values) have been monitored at different depths (from 20 to 140 cm) over one year. Results demonstrated that the carbon source in secondary carbonate (mainly needle fiber calcite) is related to the dissolved inorganic carbon, which is strongly dependent on soil respiration. The heterotrophic respiration, rather than the limestone parent material, seems to control the pedogenic carbon cycle. The correlation of δ13Corg values with Rock-Eval HI and OI indices demonstrates that, in a soil associated to scree slope deposits, the main process responsible for 13C-enrichment in SOM is related to bac- terial oxidative decarboxylation. Finally, precipitation of secondary calcium carbonate is enhanced by changes in soil pCO2 associated to the convective movement of air masses induced by temperature gradients (heat pump effect) in the highly porous scree slope deposits. The exportation of soil C-leachates from systems such as the one studied in this paper could partially explain the "gap in the European carbon budget" reported by recent studies.
Resumo:
Se ha estudiado los efectos que tiene la aplicación de cenizas de caldera de biomasa, en el modelo jerárquico de agregación (Tisdall y Oades, 1982) y en la estabilización del C orgánico en un suelo forestal situado en la zona templada del País Vasco. Para ello, se aplicaron 3 tratamientos con diferentes dosis de ceniza en muestras de suelo tamizadas a 250 μm procedentes de un huerto semillero de pinus radiata. Estas muestras fueron incubadas durante 3 meses y fraccionadas los días 29, 44, 64, 78 y 92 con la intención de separar los macroagregados grandes (LMagg), de los macroagregados pequeños (Magg), microagregados (magg), limos (silt) y arcillas (clay). Todas las fracciones fueron analizadas para determinar su contenido en C orgánico. Los resultados mostraron que con la aplicación de cenizas, el modelo jerárquico de agregación de suelo se cumple para las fracciones LMagg, Magg y magg, pero no para la fracción silt. Además se ha observado que las cenizas promueven la formación de microagregados aumentado así la capacidad de secuestro de C del suelo, pero en cambio disminuye la proporción de macroagregados, hecho que podría acarrear una disminución en la calidad estructural del suelo.
Resumo:
Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.
Resumo:
The evolution of organic matter sources in soil is related to climate and vegetation dynamics in the past recorded in paleoenvironmental Quaternary deposits such as peatlands. For this reason, a Histosol of the mineralotrophic peatland from the Pau-de-Fruta Special Protection Area - SPA, Espinhaço Meridional, State of Minas Gerais, was described and characterized to evidence the soil constituent materials and properties as related to changes in environmental conditions, supported by the isotopic and elementary characterization of soil C and N and 14C ages. Samples were collected in a depression at 1,350 m asl, where Histosols are possibly more developed due to the great thickness (505 cm). Nowadays, the area is colonized by vegetation physiognomies of the Cerrado Biome, mainly rocky and wet fields (Campo Rupestre and Campo Úmido), aside from fragments of Semidecidual Seasonal Forest, called Capões forests. The results this study showed that early the genesis of the analyzed soil profile showed a high initial contribution of mostly herbaceous organic matter before 8,090 ± 30 years BP (14C age). In the lower-mid Holocene, between 8,090 ± 30 years AP (14C age) to ± 4,100 years BP (interpolated age), the vegetation gradually became more woody, with forest expansion, possibly due to increased humidity, suggesting the existence of a more woody Cerrado in the past than at present. Drier climate conditions than the current were concluded ± 2,500 years BP (interpolated age) and that after 430 years BP (14C age) the forest gave way to grassland, predominantly. After the dry season, humidity increased to the current conditions. Due to these climate fluctuations during the Holocene, three decomposition stages of organic matter were observed in the Histosols of this study, with prevalence of the most advanced (sapric), typical of a deposit in a highly advanced stage of pedogenetic evolution.
Resumo:
Soil organic matter (SOM) plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years) of tillage (CT-conventional tillage and NT-no tillage) and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation) on total, particulate and mineral-associated organic carbon (C) stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification), the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C stock qualitatively in relation to CT R0. The results highlighted the diversification of crop rotation with cover crops as a crucial strategy for atmospheric C-CO2 sequestration and SOM quality improvement in highly weathered subtropical Oxisols.
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Resumo:
Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.
Resumo:
The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.
Resumo:
Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation). The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L.) Millsp; and Sorghum bicolor (L.) Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.