995 resultados para Software components
Resumo:
The need to effectively manage the documentation covering the entire production process, from the concept phase right through to market realise, constitutes a key issue in the creation of a successful and highly competitive product. For almost forty years the most commonly used strategies to achieve this have followed Product Lifecycle Management (PLM) guidelines. Translated into information management systems at the end of the '90s, this methodology is now widely used by companies operating all over the world in many different sectors. PLM systems and editor programs are the two principal types of software applications used by companies for their process aotomation. Editor programs allow to store in documents the information related to the production chain, while the PLM system stores and shares this information so that it can be used within the company and made it available to partners. Different software tools, which capture and store documents and information automatically in the PLM system, have been developed in recent years. One of them is the ''DirectPLM'' application, which has been developed by the Italian company ''Focus PLM''. It is designed to ensure interoperability between many editors and the Aras Innovator PLM system. In this dissertation we present ''DirectPLM2'', a new version of the previous software application DirectPLM. It has been designed and developed as prototype during the internship by Focus PLM. Its new implementation separates the abstract logic of business from the real commands implementation, previously strongly dependent on Aras Innovator. Thanks to its new design, Focus PLM can easily develop different versions of DirectPLM2, each one devised for a specific PLM system. In fact, the company can focus the development effort only on a specific set of software components which provides specialized functions interacting with that particular PLM system. This allows shorter Time-To-Market and gives the company a significant competitive advantage.
Resumo:
This paper describes the ideas and problems of the Edukalibre e-learning project, in which the author takes part. The basic objective of the project shares the development and exploitation of software components for web-based information systems applied to education as well as organizing of teaching material for them. The paper concerns a problem of the mathematical-oriented courseware and describes the experience in developing LaTeX-supporting online converting tool.
Resumo:
In this paper the software architecture of a framework which simplifies the development of applications in the area of Virtual and Augmented Reality is presented. It is based on VRML/X3D to enable rendering of audio-visual information. We extended our VRML rendering system by a device management system that is based on the concept of a data-flow graph. The aim of the system is to create Mixed Reality (MR) applications simply by plugging together small prefabricated software components, instead of compiling monolithic C++ applications. The flexibility and the advantages of the presented framework are explained on the basis of an exemplary implementation of a classic Augmented Realityapplication and its extension to a collaborative remote expert scenario.
Resumo:
coefplot plots results from estimation commands or Stata matrices. Results from multiple models or matrices can be combined in a single graph. The default behavior of coefplot is to draw markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce various other types of graphs.
Resumo:
addplot adds twoway plot objects to an existing twoway graph. This is useful if you want to add additional objects such as titles or extra data points to a twoway graph after it has been created. Most of what addplot can do, can also be done by rerunning the original graph command including additional options or plot statements. addplot, however, might be useful if you have to modify a graph for which you cannot rerun the original command, for example, because you only have the graph file but not the data that were used to create the graph. Furthermore, addplot can do certain things that would be difficult to achieve in a single graph command (e.g. customizing individual subgraphs within a by-graph). addplot also provides a substitute for some of the functionality of the graph editor.
Resumo:
robreg provides a number of robust estimators for linear regression models. Among them are the high breakdown-point and high efficiency MM-estimator, the Huber and bisquare M-estimator, and the S-estimator, each supporting classic or robust standard errors. Furthermore, basic versions of the LMS/LQS (least median of squares) and LTS (least trimmed squares) estimators are provided. Note that the moremata package, also available from SSC, is required.
Resumo:
-pshare- computes and graphs percentile shares from individual level data. Percentile shares are often used in inequality research to study the distribution of income or wealth. They are defined as differences between Lorenz ordinates of the outcome variable. Technically, the observations are sorted in increasing order of the outcome variable and the specified percentiles are computed from the running sum of the outcomes. Percentile shares are then computed as differences between percentiles, divided by total outcome. pshare requires moremata to be installed on the system; see ssc describe moremata.
Resumo:
Lorenz estimates Lorenz and concentration curves from individual-level data and, optionally, displays the results in a graph. Relative as well as generalized, absolute, unnormalized, or custom-normalized Lorenz or concentration curves are supported, and tools for computing contrasts between different subpopulations or outcome variables are provided. Variance estimation for complex samples is fully supported.
Resumo:
panels provides a quick way to count the number of panels (groups) in a dataset and display some basic information about the sizes of the panels. Furthermore, -panels- can be used as a prefix command to other Stata commands to apply them to panel units instead of individual observations. This is useful, for example, if you want to compute frequency distributions or summary statistics for panel characteristics.
Resumo:
Hoy en día, el desarrollo tecnológico en el campo de los sistemas inteligentes de transporte (ITS por sus siglas en inglés) ha permitido dotar a los vehículos con diversos sistemas de ayuda a la conducción (ADAS, del inglés advanced driver assistance system), mejorando la experiencia y seguridad de los pasajeros, en especial del conductor. La mayor parte de estos sistemas están pensados para advertir al conductor sobre ciertas situaciones de riesgo, como la salida involuntaria del carril o la proximidad de obstáculos en el camino. No obstante, también podemos encontrar sistemas que van un paso más allá y son capaces de cooperar con el conductor en el control del vehículo o incluso relegarlos de algunas tareas tediosas. Es en este último grupo donde se encuentran los sistemas de control electrónico de estabilidad (ESP - Electronic Stability Program), el antibloqueo de frenos (ABS - Anti-lock Braking System), el control de crucero (CC - Cruise Control) y los más recientes sistemas de aparcamiento asistido. Continuando con esta línea de desarrollo, el paso siguiente consiste en la supresión del conductor humano, desarrollando sistemas que sean capaces de conducir un vehículo de forma autónoma y con un rendimiento superior al del conductor. En este trabajo se presenta, en primer lugar, una arquitectura de control para la automatización de vehículos. Esta se compone de distintos componentes de hardware y software, agrupados de acuerdo a su función principal. El diseño de la arquitectura parte del trabajo previo desarrollado por el Programa AUTOPIA, aunque introduce notables aportaciones en cuanto a la eficiencia, robustez y escalabilidad del sistema. Ahondando un poco más en detalle, debemos resaltar el desarrollo de un algoritmo de localización basado en enjambres de partículas. Este está planteado como un método de filtrado y fusión de la información obtenida a partir de los distintos sensores embarcados en el vehículo, entre los que encontramos un receptor GPS (Global Positioning System), unidades de medición inercial (IMU – Inertial Measurement Unit) e información tomada directamente de los sensores embarcados por el fabricante, como la velocidad de las ruedas y posición del volante. Gracias a este método se ha conseguido resolver el problema de la localización, indispensable para el desarrollo de sistemas de conducción autónoma. Continuando con el trabajo de investigación, se ha estudiado la viabilidad de la aplicación de técnicas de aprendizaje y adaptación al diseño de controladores para el vehículo. Como punto de partida se emplea el método de Q-learning para la generación de un controlador borroso lateral sin ningún tipo de conocimiento previo. Posteriormente se presenta un método de ajuste on-line para la adaptación del control longitudinal ante perturbaciones impredecibles del entorno, como lo son los cambios en la inclinación del camino, fricción de las ruedas o peso de los ocupantes. Para finalizar, se presentan los resultados obtenidos durante un experimento de conducción autónoma en carreteras reales, el cual se llevó a cabo en el mes de Junio de 2012 desde la población de San Lorenzo de El Escorial hasta las instalaciones del Centro de Automática y Robótica (CAR) en Arganda del Rey. El principal objetivo tras esta demostración fue validar el funcionamiento, robustez y capacidad de la arquitectura propuesta para afrontar el problema de la conducción autónoma, bajo condiciones mucho más reales a las que se pueden alcanzar en las instalaciones de prueba. ABSTRACT Nowadays, the technological advances in the Intelligent Transportation Systems (ITS) field have led the development of several driving assistance systems (ADAS). These solutions are designed to improve the experience and security of all the passengers, especially the driver. For most of these systems, the main goal is to warn drivers about unexpected circumstances leading to risk situations such as involuntary lane departure or proximity to other vehicles. However, other ADAS go a step further, being able to cooperate with the driver in the control of the vehicle, or even overriding it on some tasks. Examples of this kind of systems are the anti-lock braking system (ABS), cruise control (CC) and the recently commercialised assisted parking systems. Within this research line, the next step is the development of systems able to replace the human drivers, improving the control and therefore, the safety and reliability of the vehicles. First of all, this dissertation presents a control architecture design for autonomous driving. It is made up of several hardware and software components, grouped according to their main function. The design of this architecture is based on the previous works carried out by the AUTOPIA Program, although notable improvements have been made regarding the efficiency, robustness and scalability of the system. It is also remarkable the work made on the development of a location algorithm for vehicles. The proposal is based on the emulation of the behaviour of biological swarms and its performance is similar to the well-known particle filters. The developed method combines information obtained from different sensors, including GPS, inertial measurement unit (IMU), and data from the original vehicle’s sensors on-board. Through this filtering algorithm the localization problem is properly managed, which is critical for the development of autonomous driving systems. The work deals also with the fuzzy control tuning system, a very time consuming task when done manually. An analysis of learning and adaptation techniques for the development of different controllers has been made. First, the Q-learning –a reinforcement learning method– has been applied to the generation of a lateral fuzzy controller from scratch. Subsequently, the development of an adaptation method for longitudinal control is presented. With this proposal, a final cruise control controller is able to deal with unpredictable environment disturbances, such as road slope, wheel’s friction or even occupants’ weight. As a testbed for the system, an autonomous driving experiment on real roads is presented. This experiment was carried out on June 2012, driving from San Lorenzo de El Escorial up to the Center for Automation and Robotics (CAR) facilities in Arganda del Rey. The main goal of the demonstration was validating the performance, robustness and viability of the proposed architecture to deal with the problem of autonomous driving under more demanding conditions than those achieved on closed test tracks.
Resumo:
Mixed criticality systems emerges as a suitable solution for dealing with the complexity, performance and costs of future embedded and dependable systems. However, this paradigm adds additional complexity to their development. This paper proposes an approach for dealing with this scenario that relies on hardware virtualization and Model-Driven Engineering (MDE). Hardware virtualization ensures isolation between subsystems with different criticality levels. MDE is intended to bridge the gap between design issues and partitioning concerns. MDE tooling will enhance the functional models by annotating partitioning and extra-functional properties. System partitioning and subsystems allocation will be generated with a high degree of automation. System configuration will be validated for ensuring that the resources assigned to a partition are sufficient for executing the allocated software components and that time requirements are met.
Estudio preliminar acerca del uso de protocolos y actos comunicativos FIPA en el sistema COMPUTAPLEX
Resumo:
Este trabajo corresponde con la implementación de componentes software dentro de la Plataforma COMPUTAPLEX, la cual tiene como objetivo facilitar a los investigadores la realización de tareas del proceso experimental de ingeniería de software. Uno de los aportes a esta plataforma tecnológica corresponde con el desarrolló de los componentes necesarios para la recuperación de datos experimentales disponibles en diversas fuentes de datos, para ello se hizo uso de un mecanismo capaz de unificar la extracción de información de MySQL, ficheros excel y ficheros SPSS. Con ello diferentes grupos de investigación asociados pueden compartir y tener acceso a repositorios experimentales que se mantienen tanto de manera local como externa. Por otra parte, se ha realizado un estudio de la tecnología de agentes en la que se describe sus definiciones, lenguajes de comunicación, especificación FIPA, JADE como implementación FIPA y parser XML. Además para este trabajo se ha definido e implementado una ontología de comunicación entre agentes, la misma que fue diseñada en la herramienta Protégé. En lo que se refiere al desarrollo de componentes se hizo uso de una amplía variedad de tecnologías que incluye lenguaje de programación Java, framework JADE para el desarrollo de agentes, librería JENA para manejo de ontologías, librería SAXParser para lectura de archivos XML y patrón de diseño Factory. Finalmente se describe la metodología de trabajo utilizada en el proyecto, la cual por medio de la realización de varios ciclos iterativos permitió obtener prototipos que poco a poco fueron cubriendo las necesidades del producto software.----ABSTRACT---- This work relates to the implementation of software components within the platform Computaplex, which aims to enable researchers to conduct experimental software engineering process tasks. One of the contributions to this platform technology corresponds to the development of components which are necessary for the recovery of experimental data available in different data sources, to archive this goal a mechanism able to unify the extraction of information from MySQL, Excel and SPSS files was made. Therefore, associated research groups can share and access experimental repositories that remain both locally and externally. Moreover, it has been conducted a study of agent technology in its definition is described, languages communication, FIPA, JADE and FIPA implementation and XML parser. In addition to this work, it has been defined and implemented an ontology for communication between agents, the same as was designed in the Protégé tool. In what refers to the development of components, a wide range of technologies have been made which includes Java programming language, framework JADE for agent development, JENA library for handling ontologies, SAXParser for reading XML files and Factory design pattern. Finally, describing the work methodology used in this project, which through the implementation of several iterative cycles allowed to obtain prototypes were gradually meeting the needs of the software product.
Resumo:
This paper describes ExperNet, an intelligent multi-agent system that was developed under an EU funded project to assist in the management of a large-scale data network. ExperNet assists network operators at various nodes of a WAN to detect and diagnose hardware failures and network traffic problems and suggests the most feasible solution, through a web-based interface. ExperNet is composed by intelligent agents, capable of both local problem solving and social interaction among them for coordinating problem diagnosis and repair. The current network state is captured and maintained by conventional network management and monitoring software components, which have been smoothly integrated into the system through sophisticated information exchange interfaces. For the implementation of the agents, a distributed Prolog system enhanced with networking facilities was developed. The agents’ knowledge base is developed in an extensible and reactive knowledge base system capable of handling multiple types of knowledge representation. ExperNet has been developed, installed and tested successfully in an experimental network zone of Ukraine.
Resumo:
The Safety Certification of Software-Intensive Systems with Reusable Components project, in short SafeCer (www.safecer.eu),is targeting increased efficiency and reduced time-to-market by composable safety certification of safety- relevant embedded systems. The industrial domains targeted are within automotive and construction equipment, avionics, and rail. Some of the companies involved are: Volvo Tech- nology, Thales, TTTech, and Intecs among others. SafeCer includes more than 30 partners in six different countries and has a budget of e25.7 millions. A primary objective is to provide support for system safety arguments based on arguments and properties of system components as well as to provide support for generation of corresponding evidence in a similar compositional way. By providing support for efficient reuse of certification and stronger links between certification and development, compo- nent reuse will be facilitated, and by providing support for reuse across domains the amount of components available for reuse will increase dramatically. The resulting efficiency and reduced time to market will, together with increased quality and reduced risk, increase competitiveness and pave the way for a cross-domain market for software components qualified for certification.
Resumo:
Automated Teller Machines (ATMs) are sensitive self-service systems that require important investments in security and testing. ATM certifications are testing processes for machines that integrate software components from different vendors and are performed before their deployment for public use. This project was originated from the need of optimization of the certification process in an ATM manufacturing company. The process identifies compatibility problems between software components through testing. It is composed by a huge number of manual user tasks that makes the process very expensive and error-prone. Moreover, it is not possible to fully automate the process as it requires human intervention for manipulating ATM peripherals. This project presented important challenges for the development team. First, this is a critical process, as all the ATM operations rely on the software under test. Second, the context of use of ATMs applications is vastly different from ordinary software. Third, ATMs’ useful lifetime is beyond 15 years and both new and old models need to be supported. Fourth, the know-how for efficient testing depends on each specialist and it is not explicitly documented. Fifth, the huge number of tests and their importance implies the need for user efficiency and accuracy. All these factors led us conclude that besides the technical challenges, the usability of the intended software solution was critical for the project success. This business context is the motivation of this Master Thesis project. Our proposal focused in the development process applied. By combining user-centered design (UCD) with agile development we ensured both the high priority of usability and the early mitigation of software development risks caused by all the technology constraints. We performed 23 development iterations and finally we were able to provide a working solution on time according to users’ expectations. The evaluation of the project was carried out through usability tests, where 4 real users participated in different tests in the real context of use. The results were positive, according to different metrics: error rate, efficiency, effectiveness, and user satisfaction. We discuss the problems found, the benefits and the lessons learned in the process. Finally, we measured the expected project benefits by comparing the effort required by the current and the new process (once the new software tool is adopted). The savings corresponded to 40% less effort (man-hours) per certification. Future work includes additional evaluation of product usability in a real scenario (with customers) and the measuring of benefits in terms of quality improvement.