990 resultados para Sodium compounds
Resumo:
The pure and cerium doped sodium bismuth titanate inorganic powders were synthesized by solid state reaction method. The presence of rhombohedral phase was observed in cerium doped NBT compounds. At 1200 ºC, the 5% of cerium doped NBT compound forms single perovskite phase. The samples of x = 0.10 and 0.15 were heat treated to 1350 ºC, the binary phases with cerium and bismuth oxides were observed. The X-ray diffraction, fourier transform infrared spectroscopy, reflectance spectra, differential thermal analysis and thermo gravimetric analysis were used to analyze the various properties of samples. Moreover, the effects of cerium doping and calcining temperature on NBT samples were investigated. In this work we present our recent results on the synthesis and characterization of Ce doped sodium bismuth titanate materials.
Resumo:
The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the induction of iodide uptake was mediated by retinoic acid receptor. Treatment with tRA markedly stimulated NIS mRNA and immunoreactive protein (≈68 kDa). tRA stimulated NIS gene transcription ≈4-fold, as shown by nuclear run-on assay. No induction of iodide uptake was observed with RA treatment of an ER-negative human breast cancer cell line, MDA-MB 231, or a normal human breast cell line, MCF-12A. The iodide efflux rate of tRA-treated MCF-7 cells was slow (t1/2 = 24 min), compared with that in FRTL-5 thyroid cells (t1/2 = 3.9 min), favoring iodide retention in MCF-7 cells. An in vitro clonogenic assay demonstrated selective cytotoxicity with 131I after tRA stimulation of MCF-7 cells. tRA up-regulates NIS gene expression and iodide uptake in an ER-positive breast cancer cell line. Stimulation of radioiodide uptake after systemic retinoid treatment may be useful for diagnosis and treatment of some differentiated breast cancers.
Resumo:
The effects of 31 plant extracts, which most are traditionally used to treat ciguatera fish poisoning in the Pacific area, were Studied on the cytotoxicity of mouse neuroblastoma cells produced by ouabain, veratridine and/or brevetoxin-3 or Pacific ciguatoxin-1. The cell viability was determined using a quantitative colorimetric method. A marked cytotoxicity of seven of the 31 plant extracts studied, was observed. Despite this, these plant extracts were suspected to contain active compound(s) against the cytotoxicity produced by brevetoxin (2 extracts), brevetoxin, ouabain and/or veratridine (3 extracts), or only against that of ouabain and/or veratridine (2 extracts). Among the 24 plant extracts that exhibited by themselves no cytotoxicity, 22 were active against the effect of brevetoxin or against that of both veratridine and brevetoxin. similar results were obtained when the seven most active plant extracts were reassayed using ciguatoxin instead of brevetoxin. In conclusion, the present work reports the first activity assessment of some plant extracts, achieved in vitro on a quite large scale. The fact that 27 plant extracts were found to exert, in vitro, a protective effect against the action of ciguatoxin and/or brevetoxin, paves the way for finding new active compounds to treat ciguatera fish poisoning, provided these compounds also reverse the effects of sodium channel activators. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Sodium paeoniflorin sulfonate 2 was isolated from processed, but not unprocessed, Paeonia lactiflora roots and characterized by mass spectrometry and NMR spectroscopy. A notable and characteristic downfield shift in the H-1 NMR was observed for the hydrogens to the alkoxysulfonate moiety in 2 and in other model compounds. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Quaternary ammonium exchanged laponites (Quat-laponites) show selectivity in the adsorption of phenols and chlorinated phenols. Strong adsorbate-adsorbent interactions are indicated by adsorption isotherms. Adsorption of phenols and chlorinated phenols by Quat-smectites is greater than that by the Bi Quat-Smectites prepared in this study. It is thought that the quaternary ammonium exchanged smectite components of the Bi Quat-smectites interact with each other (adsorbent-adsorbent interactions) reducing the number of sites available for adsorbate-adsorbent interactions. Solidification/stabilisation studies of 2-chlorophenol show that a blend of ground granulated blast furnace slag and ordinary Portland cement attenuates 2-chlorophenol more effectively than ordinary Portland cement alone. Tetramethyl ammonium- (TMA-) and tetramethyl phosphonium- (TMP-) montmorillonites were exposed to solutions of phenol or chlorinated phenols. TMP- montmorillonite was the better adsorbent and preferentially adsorbed 4-chlorophenol over phenol. Hydration of the interlayer cations occurs to a greater extent in the TMA-montmorillonite than the TMP-montmorillonite restricting interlayer adsorption. Contrary to that observed for phenols and chlorinated phenols, the Quat-smectites were ineffective as adsorbents for triphenyltin hydroxide and bis(tributyltin) oxide at room temperature. Under microwave conditions, only bis(tributyltin) oxide was adsorbed by the quaternary ammonium exchanged smectites. Bis(tributyltin) oxide was adsorbed from ethanol on the surface of the smectite clays at room temperature and under microwave conditions. The adsorbate-adsorbent interactions were weak. Adsorption is accompanied by conversion of bis(tributyltin) oxide to a different tin(IV) species and the release of sodium cations from the montmorillonite interlayer region. Attempts to introduce conditions suitable for charge transfer interactions between synthesised quaternary ammonium compounds and 2,4,6-trichlorophenol are documented. Transition metal complex exchanged clays adsorb 2,4,6-trichlorophenol and phenol. Strong adsorbate-adsorbent interactions (Type I isotherms) occur when the adsorbate is 2,4,6-trichlorophenol and when the adsorbent is [Fe(bipy)3]2+ exchanged montmorillonite or [Co(bipy)3]3+ exchanged montmorillonite. The 2,2'-bipyridyl ligands of the adsorbents are electron rich and the 2,4,6-trichlorophenol is electron deficient. This may have enhanced adsorbate-adsorbent interactions.
Resumo:
Resistance to pentavallent antimonial (Sb-v) agents such as sodium stibogluconate (SSG) is creating a major problem in the treatment of visceral leishmaniasis. In the present study the in vivo susceptibilities of Leishmania donovani strains, typed as SSG resistant (strain 200011) or SSG sensitive (strain 200016) on the basis of their responses to a single SSG dose of 300 mg of Sb-v/kg of body weight, to other antileishmanial drugs were determined. In addition, the role of glutathione in SSG resistance was investigated by determining the influence on SSG treatment of concomitant treatment with a nonionic surfactant vesicle formulation of buthionine sulfoximine (BSO), a specific inhibitor of the enzyme gamma-glutamylcysteine synthetase which is involved in glutathione biosynthesis, and SSG, on the efficacy of SSG treatment. L. donovani strains that were SSG resistant (strain 200011) and SSG sensitive (strain 200016) were equally susceptible to in vivo treatment with miltefosine, paromomycin and amphotericin B (Fungizone and AmBisome) formulations. Combined treatment with SSG and vesicular BSO significantly increased the in vivo efficacy of SSG against both the 200011 and the 200016 L. donovani strains. However, joint treatment that included high SSG doses was unexpectedly associated with toxicity. Measurement of glutathione levels in the spleens and livers of treated mice showed that the ability of the combined therapy to inhibit glutathione levels was also dependent on the SSG dose used and that the combined treatment exhibited organ-dependent effects. The SSG resistance exhibited by the L. donovani strains was not associated with cross-resistance to other classes of compounds and could be reversed by treatment with an inhibitor of glutathione biosynthesis, indicating that clinical resistance to antimonial drugs should not affect the antileishmanial efficacies of alternative drugs. In addition, it should be possible to identify a treatment regimen that could reverse antimony resistance.
Resumo:
In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.
Resumo:
Bioactive extracts were obtained from powdered carob pulp through an ultrasound extraction process and then evaluated in terms of antioxidant activity. Ten minutes of ultrasonication at 375 Hz were the optimal conditions leading to an extract with the highest antioxidant effects. After its chemical characterization, which revealed the preponderance of gallotannins, the extract (free and microencapsulated) was incorporated in yogurts. The microspheres were prepared using an extract/sodium alginate ratio of 100/400 (mg mg(-1)) selected after testing different ratios. The yogurts with the free extract exhibited higher antioxidant activity than the samples added with the encapsulated extracts, showing the preserving role of alginate as a coating material. None of the forms significantly altered the yogurt's nutritional value. This study confirmed the efficiency of microencapsulation to stabilize functional ingredients in food matrices maintaining almost the structural integrity of polyphenols extracted from carob pulp and furthermore improving the antioxidant potency of the final product.