1000 resultados para Snow.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal variations in the stable isotopic composition of snow and meltwater were investigated in a sub-arctic, mountainous, but non-glacial, catchment at Okstindan in northern Norway based on analyses of delta(18)O and deltaD. Samples were collected during four field periods (August 1998; April 1999; June 1999 and August 1999) at three sites lying on an altitudinal transect (740-970 m a.s.l.). Snowpack data display an increase in the mean values of delta(18)O (increasing from a mean value of - 13.51 to - 11.49% between April and August), as well as a decrease in variability through the melt period. Comparison with a regional meteoric water line indicates that the slope of the delta(18)O - deltaD line for the snowpacks decreases over the same period, dropping from 7.49 to approximately 6.2. This change points to the role of evaporation in snowpack ablation and is confirmed by the vertical profile of deuterium excess. Snowpack seepage data, although limited, also suggest reduced values of deltaD, as might be associated with local evaporation during meltwater generation. In general, meltwaters were depleted in delta(18)O relative to the source snowpack at the peak of the melt (June), but later in the year (August) the difference between the two was not statistically significant. The diurnal pattern of isotopic composition indicates that the most depleted meltwaters coincide with the peak in temperature and, hence, meltwater production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

John Snow was a physician but his studies of the way in which cholera is spread have long attracted the interest of hydrogeologists. From his investigation into the epidemiology of the cholera outbreak around the well in Broad Street, London, in 1854, Snow gained valuable evidence that cholera is spread by contamination of drinking water. Subsequent research by others showed that the well was contaminated by sewage. The study therefore represents one of the first, if not the first, study of an incident of groundwater contamination in Britain. Although he had no formal geological training, it is clear that Snow had a much better understanding of groundwater than many modern medical practitioners. At the time of the outbreak Snow was continuing his practice as a physician and anaesthetist. His casebooks for 1854 do not even mention cholera. Yet, nearly 150 years later, he is as well known for his work on cholera as for his pioneering work on anaesthesia, and his discoveries are still the subject of controversy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters average soil thermal conductivity, specific beat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981-August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R-2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R-2 -values of the testing period were between 0.87 and 0.94 at a depth of 20cm. and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means, that the model is suitable for addition to catchment scale models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testing of the Integrated Nitrogen model for Catchments (INCA) in a wide range of ecosystem types across Europe has shown that the model underestimates N transformation processes to a large extent in northern catchments of Finland and Norway in winter and spring. It is found, and generally assumed, that microbial activity in soils proceeds at low rates at northern latitudes during winter, even at sub-zero temperatures. The INCA model was modified to improve the simulation of N transformation rates in northern catchments, characterised by cold climates and extensive snow accumulation and insulation in winter, by introducing an empirical function to simulate soil temperatures below the seasonal snow pack, and a degree-day model to calculate the depth of the snow pack. The proposed snow-correction factor improved the simulation of soil temperatures at Finnish and Norwegian field sites in winter, although soil temperature was still underestimated during periods with a thin snow cover. Finally, a comparison between the modified INCA version (v. 1.7) and the former version (v. 1.6) was made at the Simojoki river basin in northern Finland and at Dalelva Brook in northern Norway. The new modules did not imply any significant changes in simulated NO3- concentration levels in the streams but improved the timing of simulated higher concentrations. The inclusion of a modified temperature response function and an empirical snow-correction factor improved the flexibility and applicability of the model for climate effect studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anomalous heavy snow during winter or spring has long been regarded as a possible precursor of deficient Indian monsoon rainfall during the subsequent summer. However previous work in this field is inconclusive, in terms of the mechanism that communicates snow anomalies to the monsoon summer, and even the region from which snow has the most impact. In this study we explore these issues in coupled and atmosphere-only versions of the Hadley Centre model. A 1050-year control integration of the HadCM3 coupled model, which well represents the seasonal cycle of snow cover over the Eurasian continent, is analysed and shows evidence for weakened monsoons being preceded by strong snow forcing (in the absence of ENSO) over either the Himalaya/Tibetan Plateau or north/west Eurasia regions. However, empirical orthogonal function (EOF) analysis of springtime interannual variability in snow depth shows the leading mode to have opposite signs between these two regions, suggesting that competing mechanisms may be possible. To determine the dominant region, ensemble integrations are carried out using HadAM3, the atmospheric component of HadCM3, and a variety of anomalous snow forcing initial conditions obtained from the control integration of the coupled model. Forcings are applied during spring in separate experiments over the Himalaya/Tibetan Plateau and north/west Eurasia regions, in conjunction with climatological SSTs in order to avoid the direct effects of ENSO. With the aid of idealized forcing conditions in sensitivity tests, we demonstrate that forcing from the Himalaya region is dominant in this model via a Blanford-type mechanism involving reduced surface sensible heat and longwave fluxes, reduced heating of the troposphere over the Tibetan Plateau and consequently a reduced meridional tropospheric temperature gradient which weakens the monsoon during early summer. Snow albedo is shown to be key to the mechanism, explaining around 50% of the perturbation in sensible heating over the Tibetan Plateau, and accounting for the majority of cooling through the troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty‐three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation phase and duration of above‐freezing air temperatures are shown to be major influences on divergence and convergence of modeled estimates of the subcanopy snowpack. When models are considered collectively at all locations, comparisons with observations show that it is harder to model SWE at forested sites than open sites. There is no universal “best” model for all sites or locations, but comparison of the consistency of individual model performances relative to one another at different sites shows that there is less consistency at forest sites than open sites, and even less consistency between forest and open sites in the same year. A good performance by a model at a forest site is therefore unlikely to mean a good model performance by the same model at an open site (and vice versa). Calibration of models at forest sites provides lower errors than uncalibrated models at three out of four locations. However, benefits of calibration do not translate to subsequent years, and benefits gained by models calibrated for forest snow processes are not translated to open conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow properties have been retrieved from satellite data for many decades. While snow extent is generally felt to be obtained reliably from visible-band data, there is less confidence in the measurements of snow mass or water equivalent derived from passive microwave instruments. This paper briefly reviews historical passive microwave instruments and products, and compares the large-scale patterns from these sources to those of general circulation models and leading reanalysis products. Differences are seen to be large between the datasets, particularly over Siberia. A better understanding of the errors in both the model-based and measurement-based datasets is required to exploit both fully. Techniques to apply to the satellite measurements for improved large-scale snow data are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Northern hemisphere snow water equivalent (SWE) distribution from remote sensing (SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model are compared. Large differences are seen in the February climatologies, particularly over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this region, while comparison with independent runoff estimates suggest that HadCM3 is underestimating SWE. Treatment of snow grain size and vegetation parameterizations are concerns with the remotely sensed data. For this reason, ERA40 is used as `truth' for the following experiments. Despite the climatology differences, HadCM3 is able to reproduce the distribution of ERA40 SWE anomalies when assimilating ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean temperature and salinity. However when forecasts are released from these assimilated initial states, the SWE anomaly distribution diverges rapidly from that of ERA40. No predictability is seen from one season to another. Strong links between European SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts of this index by the assimilation scheme are poor. Longer term relationships between SWE and the NAO, and SWE and the El Ni\~no-Southern Oscillation (ENSO) are also investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the Himalayas and North America, while the NAO affects SWE in North America and Europe. While significant connections with the NAO index were only present in DJF (and to an extent SON), the link between ENSO and February SWE distribution was seen to exist from the previous JJA ENSO index onwards. This represents a long lead time for SWE prediction for hydrological applications such as flood and wildfire forecasting. Further work is required to develop reliable large scale observation-based SWE datasets with which to test these model-derived connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow is an important component of the land surface, and the choice of products for assimilation or verification can have a large impact on the surface analysis. This paper introduces the many sources of snow data that are currently available, both in situ and from remote sensing from space, along with some recent developments. Snow extent products are derived from the biggest range of sensors and are the most widely used, while information on snow mass from space is still too error-prone to be used successfully in assimilation schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inability of a plant to grow roots rapidly upon transplanting is one of the main factors contributing to poor establishment. In bare-rooted trees, treatments such as root pruning or application of the plant hormone auxin [e.g., indole butyric acid (IBA)] can promote root growth and aid long-term establishment. There is little information on ornamental containerised plants, however, other than the anecdotal notion that 'teasing' the roots out of the rootsoil mass before transplanting can be beneficial. In the present study we tested the ability of various root-pruning treatments and application of IBA to encourage new root and shoot growth in two shrub species, commonly produced in containers - Buddleja davidii 'Summer Beauty' and Cistus 'Snow Fire'. In a number of experiments, young plants were exposed to root manipulation (teasing, light pruning, or two types of heavy pruning) and/or treatment with IBA (at 500 or 1,000 mg l-1) before being transplanted into larger containers containing a medium of 1:1:1 (v/v/v) fine bark, sand and loam. Leaf stomatal conductance (gl) was measured 20 min, and 1, 2, 4 and 6 h after root manipulation. Net leaf CO2 assimilation (A) was measured frequently during the first week after transplanting, then at regular intervals up to 8 weeks after transplanting. Plants were harvested 8 weeks after transplanting, and root and shoot weights were measured. In both species, light root pruning alone, or in combination with 500 mg l-1 IBA, was most effective in stimulating root growth. In contrast, teasing, which is commonly used, showed no positive effect on root growth in Buddleja, and decreased new root growth in Cistus. The requirement for exogenous auxin to encourage new root growth varied between experiments and appeared to be influenced by the age and developmental stage of the plants. There were no consistent responses between root treatments and net CO2 assimilation rates, and changes in root weight were not closely correlated with changes in assimilation. The mechanisms whereby new root growth is sustained are discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating snow mass at continental scales is difficult but important for understanding landatmosphere interactions, biogeochemical cycles and Northern latitudes’ hydrology. Remote sensing provides the only consistent global observations, but the uncertainty in measurements is poorly understood. Existing techniques for the remote sensing of snow mass are based on the Chang algorithm, which relates the absorption of Earth-emitted microwave radiation by a snow layer to the snow mass within the layer. The absorption also depends on other factors such as the snow grain size and density, which are assumed and fixed within the algorithm. We examine the assumptions, compare them to field measurements made at the NASA Cold Land Processes Experiment (CLPX) Colorado field site in 2002–3, and evaluate the consequences of deviation and variability for snow mass retrieval. The accuracy of the emission model used to devise the algorithm also has an impact on its accuracy, so we test this with the CLPX measurements of snow properties against SSM/I and AMSR-E satellite measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.