898 resultados para Snare Proteins
Resumo:
Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Cell migration is a highly complex process that requires the extension of cell membrane in the direction of travel. This membrane is continuously remodeled to expand the leading edge and alter its membrane properties. For a long time it has been known that there is a continual flow of polarized membrane traffic towards the leading edge during migration and that this trafficking is essential for cell migration. However, there is little information on how the cell coordinates exocytosis at the leading edge. It is also unclear whether these internal membranes are incorporated into the leading edge or are just delivering the necessary proteins for migration to occur. We have shown that recycling endosome membrane is incorporated into the plasma membrane at the leading edge to expand the membrane and at the same time delivers receptors to the leading edge to mediate migration. In order for this to happen the surface Q-SNARE complex Stx4/SNAP23 translocates to the leading edge where it binds to the R-SNARE VAMP3 on the recycling endosome allowing incorporation into the plasma membrane. Loss of any one of the components of this complex reduces efficient lamellipodia formation and restrains cell migration.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
We demonstrate that two characteristic Sus-like proteins encoded within a Polysaccharide Utilisation Locus (PUL) bind strongly to cellulosic substrates and interact with plant primary cell walls. This shows associations between uncultured Bacteroidetes-affiliated lineages and cellulose in the rumen, and thus presents new PUL-derived targets to pursue regarding plant biomass degradation.
Resumo:
Breast cancer is a leading contributor to the burden of disease in Australia. Fortunately, the recent introduction of diverse therapeutic strategies have improved the survival outcome for many women. Despite this, the clinical management of breast cancer remains problematic as not all approaches are sufficiently sophisticated to take into account the heterogeneity of this disease and are unable to predict disease progression, in particular, metastasis. As such, women with good prognostic outcomes are exposed to the side effects of therapies without added benefit. Furthermore, women with aggressive disease for whom these advanced treatments would deliver benefit cannot be distinguished and opportunities for more intensive or novel treatment are lost. This study is designed to identify novel factors associated with disease progression, and the potential to inform disease prognosis. Frequently overlooked, yet common mediators of disease are the interactions that take place between the insulin-like growth factor (IGF) system and the extracellular matrix (ECM). Our laboratory has previously demonstrated that multiprotein insulin-like growth factor-I (IGF-I): insulin-like growth factor binding protein (IGFBP): vitronectin (VN) complexes stimulate migration of breast cancer cells in vitro, via the cooperative involvement of the insulin-like growth factor type I receptor (IGF-IR) and VN-binding integrins. However, the effects of IGF and ECM protein interactions on the dissemination and progression of breast cancer in vivo are unknown. It was hypothesised that interactions between proteins required for IGF induced signalling events and those within the ECM contribute to breast cancer metastasis and are prognostic and predictive indicators of patient outcome. To address this hypothesis, semiquantitative immunohistochemistry (IHC) analyses were performed to compare the extracellular and subcellular distribution of IGF and ECM induced signalling proteins between matched normal, primary cancer, and metastatic cancer among archival formalin-fixed paraffin-embedded (FFPE) breast tissue samples collected from women attending the Princess Alexandra Hospital, Brisbane. Multivariate Cox proportional hazards (PH) regression survival models in conjunction with a modified „purposeful selection of covariates. method were applied to determine the prognostic potential of these proteins. This study provides the first in-depth, compartmentalised analysis of the distribution of IGF and ECM induced signalling proteins. As protein function and protein localisation are closely correlated, these findings provide novel insights into IGF signalling and ECM protein function during breast cancer development and progression. Distinct IGF signalling and ECM protein immunoreactivity was observed in the stroma and/or in subcellular locations in normal breast, primary cancer and metastatic cancer tissues. Analysis of the presence and location of stratifin (SFN) suggested a causal relationship in ECM remodelling events during breast cancer development and progression. The results of this study have also suggested that fibronectin (FN) and ¥â1 integrin are important for the formation of invadopodia and epithelial-to-mesenchymal transition (EMT) events. Our data also highlighted the importance of the temporal and spatial distribution of IGF induced signalling proteins in breast cancer metastasis; in particular, SFN, enhancer-of-split and hairy-related protein 2 (SHARP-2), total-akt/protein kinase B 1 (Total-AKT1), phosphorylated-akt/protein kinase B (P-AKT), extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (ERK1/2) and phosphorylated-extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (P-ERK1/2). Multivariate survival models were created from the immunohistochemical data. These models were found to fit well with these data with very high statistical confidence. Numerous prognostic confounding effects and effect modifications were identified among elements of the ECM and IGF signalling cascade and corroborate the survival models. This finding provides further evidence for the prognostic potential of IGF and ECM induced signalling proteins. In addition, the adjusted measures of associations obtained in this study have strengthened the validity and utility of the resulting models. The findings from this study provide insights into the biological interactions that occur during the development of breast tissue and contribute to disease progression. Importantly, these multivariate survival models could provide important prognostic and predictive indicators that assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy. The outcomes of this study further inform the development of new therapeutics to aid patient recovery. The findings from this study have widespread clinical application in the diagnosis of disease and prognosis of disease progression, and inform the most appropriate clinical management of individuals with breast cancer.