935 resultados para Smokeless tobacco
Resumo:
Objective: To evaluate the pilot phase of a tobacco brief intervention program in three Indigenous health care settings in rural and remote north Queensland. Methods: A combination of in-depth interviews with health staff and managers and focus groups with health staff and consumers. Results: The tobacco brief intervention initiative resulted in changes in clinical practice among health care workers in all three sites. Although health workers had reported routinely raising the issue of smoking in a variety of settings prior to the intervention, the training provided them with an additional opportunity to become more aware of new approaches to smoking cessation. Indigenous health workers in particular reported that their own attempts to give up smoking following the training had given them confidence and empathy in offering smoking cessation advice. However, the study found no evidence that anybody had actually given up smoking at six months following the intervention. Integration of brief intervention into routine clinical practice was constrained by organisational, interpersonal and other factors in the broader socio-environmental context. Conclusions/implications: While modest health gains may be possible through brief intervention, the potential effectiveness in Indigenous settings will be limited in the absence of broader strategies aimed at tackling community-identified health priorities such as alcohol misuse, violence, employment and education. Tobacco and other forms of lifestyle brief. intervention need to be part of multi-level health strategies. Training in tobacco brief intervention should address both the Indigenous context and the needs of Indigenous health care workers.
Resumo:
Phytophthora nicotianae is a devastating root and stem pathogen of tobacco (Nicotiana tabacum) in South Africa. Growers strive to control the resulting disease, known as black shank, with metalaxyl treatments and resistant cultivars. The aim of this study was to consider whether development of metalaxyl resistance in P. nicotianae has contributed to poor disease control and if recently developed cultivars with high levels of resistance require metalaxyl for effective control. One hundred and thirty-two isolates of P. nicotianae were screened for sensitivity to metalaxyl. P. nicotianae isolates from most tobacco farms were metalaxyl sensitive. Growth of most isolates was inhibited completely at 1.0 μg a.i./ml. However, isolates from the MKTV tobacco producing area showed EC50 values ranging from 1.02 μg a.i./ml to 3.57 μg a.i./ml. Twenty-one tobacco cultivars were planted and treated with and without metalaxyl in two different growing seasons to evaluate their resistance to P. nicotianae and the value of using metalaxyl. Hicks was the most susceptible cultivar. Vuma/3/46, LK30/40/60-1, and LK33/60 exhibited the greatest resistance to P. nicotianae. Use of metalaxyl in combination with moderately resistant cultivars such as NC60 × TL33 and LK10/80/60 effectively reduced black shank in the field. Resistant cultivars were healthy and no significant difference between metalaxyl treated and untreated plants was observed.
Resumo:
Relationships between mineral uptake and tobacco shoot organogenesis were investigated during three morphogenic phases: phase 1, days 0-10, pre-meristem formation; phase 2, days 10-20, meristem initiation and formation; and phase 3, days 20-35, growth and differentiation of induced meristems into leafy shoots. The mineral content of both shoot-forming (SF) and non-shoot-forming (NSF) media was examined over the 35-day culture period. Both SF and NSF explants rapidly consumed iron during phase 1. Nitrate uptake in SF explants was high and independent of explant growth during phases 1 and 2, but greatest and strongly correlated with growth during phase 3. Phosphorus uptake was highest in SF explants during phases 2 and 3, and correlated with explant growth. Uptake of potassium, calcium and sulphur was strongly associated with explant growth during phase 3 whereas magnesium uptake was only poorly correlated with growth. Results from this study indicate that particular minerals may have an important role in regulating development as well as generally supporting growth.
Resumo:
Formaldehyde (FA) is a colour less gas widely used in the industry and hospitals as an aqueous solution, formalin. It is extremely reactive and induces various genotoxic effects in proliferating cultured mammalian cells. Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Approximately 90% of human cancers originate from epithelial cells. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion. The cytokinesis-blocked micronucleus assay (CBMN) in human lymphocytes is one of the most commonly used methods for measuring DNA damage, namely the detection of micronucleus, nucleoplasmic bridges, and nuclear buds.
Resumo:
Formaldehyde (FA) is a colourless gas widely used in the industry and hospitals as an aqueous solution, formalin. It is extremely reactive and induces various genotoxic effects in proliferating cultured mammalian cells. Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Genetic polymorphisms in enzymes involved in the metabolism are very important and can make changes in the individual susceptibility to disease. Alcohol dehydrogenase class 3 (ADH3), also known as formaldehyde dehydrogenase dependent of glutathione, is the major enzyme involved in the formaldehyde oxidation, especially in the buccal mucosa. The polymorphism in study is a substitution of an isoleucine for a valine in codon 349. The cytokinesis-blocked micronucleus assay (CBMN) in human lymphocytes is one of the most commonly used methods for measuring DNA damage, namely the detection of micronucleus, nucleoplasmic bridges, and nuclear buds, classified as genotoxicity biomarkers.
Resumo:
Formaldehyde is classified by IARC as carcinogenic to humans (nasopharyngeal cancer). Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. XRCC3 is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks (Thr241Met polymorphism). The aim of the study is to determine whether there is an in vivo association between genetic polymorphism of the gene XRCC3 and the frequency of genotoxicity biomarkers in subjects exposed or not to formaldehyde and with or without tobacco consumption.
Resumo:
Occupational exposure to formaldehyde (FA) has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans. Tobacco smoke has been associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Alcohol is a recognized agent that influence cells in a genotoxic form, been citied as a strong agent with potential in the development of carcinogenic lesions. Epidemiological evidence points to a strong synergistic effect between cigarette smoking and alcohol consumption in the induction of cancers in the oral cavity. Approximately 90% of human cancers originate from epithelial cells. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion. The MN assay in buccal cells was also used to study cancerous and precancerous lesions and to monitor the effects of a number of chemopreventive agents.
Resumo:
Environmental tobacco smoke (ETS) is recognized as an occupational hazard in the hospitality industry. Although Portuguese legislation banned smoking in most indoor public spaces, it is still allowed in some restaurants/bars, representing a potential risk to the workers’ health, particularly for chronic respiratory diseases. The aims of this work were to characterize biomarkers of early genetic effects and to disclose proteomic signatures associated to occupational exposure to ETS and with potential to predict respiratory diseases development. A detailed lifestyle survey and clinical evaluation (including spirometry) were performed in 81 workers from Lisbon restaurants. ETS exposure was assessed through the level of PM 2.5 in indoor air and the urinary level of cotinine. The plasma samples were immunodepleted and analysed by 2D-SDSPAGE followed by in-gel digestion and LC-MS/MS. DNA lesions and chromosome damage were analysed innlymphocytes and in exfoliated buccal cells from 19 cigarette smokers, 29 involuntary smokers, and 33 non-smokers not exposed to tobacco smoke. Also, the DNA repair capacity was evaluated using an ex vivo challenge comet assay with an alkylating agent (EMS). All workers were considered healthy and recorded normal lung function. Interestingly, following 2D-DIGE-MS (MALDI-TOF/TOF), 61 plasma proteins were found differentially expressed in ETS-exposed subjects, including 38 involved in metabolism, acute-phase respiratory inflammation, and immune or vascular functions. On the other hand, the involuntary smokers showed neither an increased level of DNA/chromosome damage on lymphocytes nor an increased number of micronuclei in buccal cells, when compared to non-exposed non-smokers. Noteworthy, lymphocytes challenge with EMS resulted in a significantly lower level of DNA breaks in ETS-exposed as compared to non-exposed workers (P<0.0001) suggestive of an adaptive response elicited by the previous exposure to low levels of ETS. Overall, changes in proteome may be promising early biomarkers of exposure to ETS. Likewise, alterations of the DNA repair competence observed upon ETS exposure deserves to be further understood. Work supported by Fundação Calouste Gulbenkian, ACSS and FCT/Polyannual Funding Program.
Resumo:
OBJECTIVE: To determine health care costs and economic burden of epidemiological changes in diseases related to tobacco consumption. METHODS: A time-series analysis in Mexico (1994-2005) was carried out on seven health interventions: chronic obstructive pulmonary diseases, lung cancer with and without surgical intervention, asthma in smokers and non-smokers, full treatment course with nicotine gum, and full treatment course with nicotine patch. According with Box-Jenkins methodology, probabilistic models were developed to forecast the expected changes in the epidemiologic profile and the expected changes in health care services required for selected interventions. Health care costs were estimated following the instrumentation methods and validated with consensus technique. RESULTS: A comparison of the economic impact in 2006 vs. 2008 showed 20-90% increase in expected cases depending on the disease (p<0.05), and 25-93% increase in financial requirements (p<0.01). The study data suggest that changes in the demand for health services for patients with respiratory diseases related to tobacco consumption will continue showing an increasing trend. CONCLUSIONS: In economic terms, the growing number of cases expected during the study period indicates a process of internal competition and adds an element of intrinsic competition in the management of preventive and curative interventions. The study results support the assumption that if preventive programs remain unchanged, the increasing demands for curative health care may cause great financial and management challenges to the health care system of middle-income countries like Mexico.
Resumo:
OBJECTIVE: To analyze the prevalence of cigarette smoking in individuals with severe mental illnesses in a large urban centre of a middle income country. METHODS: Cross-sectional study carried out in São Paulo. The sample (N=192) comprised individuals diagnosed with severe mental illnesses who had contact with public psychiatric care services from September to November 1997 and were aged between 18 and 65 years. Prevalence of daily tobacco smoking in the 12 months previous to the interview and characteristics associated were studied. RESULTS: Out of 192 subjects with severe mental illnesses interviewed, 115 (59.9%; 95% CI: 52.6%; 66.9%) reported smoking cigarettes on a daily basis. Male gender, marital status separated or widowed, irregular use of neuroleptic drugs and history of ten or more psychiatric admissions were independently associated with cigarette smoking. CONCLUSIONS: The prevalence of cigarette smoking in the present sample was higher than that found in the general Brazilian population. Mental care services should implement non-smoking policies and mental health providers need to help patients with severe mental illness who want to quit smoking.
Resumo:
Traffic emissions and tobacco smoke are considered two main sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air. In this study, the impact of these sources on the level of fine particulate matter (PM2.5) and on the distribution of 15 PAHs regarded as priority pollutants by the US-EPA on PM2.5 were evaluated and compared. Outdoor and indoor PM2.5 samples were collected during winter 2008 in Oporto city in Portugal, for sampling periods of 12 and 24 hours, respectively. The outdoor PM2.5 were sampled at one site directly influenced by traffic emissions and the indoor PM2.5 samples were collected at one home directly influenced by tobacco smoke and another one without smoke. A methodology based on microwave-assisted extraction and liquid chromatography with fluorescence detection was applied for the efficient PAHs determination in indoor and outdoor PM2.5. PAHs in indoor PM2.5 concentrations were significantly influenced by the presence of traffic and tobacco smoking emissions. The mean of ΣPAHs in the outdoor traffic PM2.5 was not significantly different from the value attained in the indoor without smoking site. The tobacco smoke increased significantly PAHs concentrations on average about 1000 times more, when compared with the outdoor profile samples suggesting that tobacco smoking may be the most important source of indoor PAHs pollution.
Resumo:
Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM10 and PM2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE–LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM10, and 720% for PM2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600–21 000% and 5100–20 800% higher than at the reference site for PM10 and PM2.5, respectively, accounting for 49% of total PAH (SPAH). Higher molecular weight PAH (5–6 rings) reached concentrations 300–1300% and 140–1700% higher for PM10 and PM2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM10 and PM2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of SPAH in PM10 and PM2.5, respectively, and at the smoking site 56% and 55% of SPAH in PM10 and PM2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk for cardiopulmonary disease and lung cancer; thus, these conclusions are relevant for the development of strategies to protect public health.
Resumo:
As polycyclic aromatic hydrocarbons (PAHs) have a negative impact on human health due to their mutagenic and/or carcinogenic properties, the objective of this work was to study the influence of tobacco smoke on levels and phase distribution of PAHs and to evaluate the associated health risks. The air samples were collected at two homes; 18 PAHs (the 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were determined in gas phase and associated with thoracic (PM10) and respirable (PM2.5) particles. At home influenced by tobacco smoke the total concentrations of 18 PAHs in air ranged from 28.3 to 106 ngm 3 (mean of 66.7 25.4 ngm 3),∑PAHs being 95% higher than at the non-smoking one where the values ranged from 17.9 to 62.0 ngm 3 (mean of 34.5 16.5 ngm 3). On average 74% and 78% of ∑PAHs were present in gas phase at the smoking and non-smoking homes, respectively, demonstrating that adequate assessment of PAHs in air requires evaluation of PAHs in both gas and particulate phases. When influenced by tobacco smoke the health risks values were 3.5e3.6 times higher due to the exposure of PM10. The values of lifetime lung cancer risks were 4.1 10 3 and 1.7 10 3 for the smoking and nonsmoking homes, considerably exceeding the health-based guideline level at both homes also due to the contribution of outdoor traffic emissions. The results showed that evaluation of benzo[a]pyrene alone would probably underestimate the carcinogenic potential of the studied PAH mixtures; in total ten carcinogenic PAHs represented 36% and 32% of the gaseous ∑PAHs and in particulate phase they accounted for 75% and 71% of ∑PAHs at the smoking and non-smoking homes, respectively.