768 resultados para Smart home
Resumo:
As 'fresher's week' commences, the Public Health Agency is encouraging students across Northern Ireland to avoid binge drinking and to know their limits if they do choose to drink alcohol.Enjoying new freedoms, at college or university, means taking care of yourself and others and, if you choose to drink, staying within safe alcohol limits. Owen O'Neill, PHA Health and Social Wellbeing Improvement Manager for drugs and alcohol, said: "Some young people may drink more when they leave home, or join their friends in college or university for the first time. They might think that, as young people, they don't have to take care with alcohol, but staying within the safe drinking limits is important for everyone who drinks. Excessive and binge drinking can have lasting effects on health, such as damage to the liver, heart, brain and stomach. Drinking too much can also increase the risk of accidents and antisocial behaviour as well as sexually transmitted infections and unplanned pregnancy"."We would also strongly advise against drinking games. Although they are regarded as a 'bit of fun', in reality they can be very dangerous. As an extreme form of binge drinking, where large quantities of alcohol are consumed in a very short time, drinking games can result in alcohol poisoning, leading to brain damage, coma or death. The PHA encourages students to enjoy their new student life, but urges them to be aware of their alcohol intake and drink responsibly, especially throughout fresher's week, with the many cheap drink promotions currently available."Daily alcohol limits are recommended by the government in order to avoid the risks of excessive and binge drinking in any one session. These are:Men: No more than 3 to 4 units of alcohol a day and no more than 21 units over the course of the week.Women: No more than 2 to 3 units of alcohol a day and no more than 14 units over the course of the week.Examples of units:Can of extra strong lager - 4 unitsBottle of lager - 1.5 unitsPint of standard lager - 2.5 unitsPint of premium larger - 3 unitsSmall pub bottle of wine - 2.25 units70cl bottle of wine - 7 to 10 unitsStandard 275ml of alcopops - 1.5 to 1.8 units70cl bottle of alcopops - 3.75 to 4.5 unitsPub measure of spirits - 1.5 unitsPint of cider - 3 unitsPint of stout - 2.5 unitsIf you do choose to drink alcohol:DON'T:Ever drink and driveDrink on an empty stomachMix alcohol with other drugsDrink in rounds as this may speed up your drinkingLeave your drinks unattendedDO:Take sips rather than gulpsAlternate each alcoholic drink with a non alcoholic drink e.g. water or a soft drinkSet yourself a limit and try to stick to it (refer to daily alcohol limits) Take frequent breaks from drinking to give your body time to recoverTell friends and family where you are going and who you will be withRemember, that for each unit you drink over the daily limit, the risk to your health increases. It's important to spread the units throughout the week - you can't 'save up' your units for the weekend or your holiday. It is also important to drink plenty of water, ideally matching the amount of alcohol you have consumed.So students make smart choices this term - drink sensibly and know your limits!For further information on sensible drinking and alcohol units visit the Public Health Agency's website www.knowyourlimits.info
Resumo:
If you haven’t been in the market for new appliances during the past several years, you’re going to be surprised at how innovative and energy-efficient appliances have become. You’ll find energy-smart appliance choices in almost all price ranges. Before heading to the local appliance retailer or “big-box” store, measure the space the new appliance will occupy to make sure it will fit—and that there’s enough room to fully open the door (or lid), as well as adequate clearances for ventilation, plumbing connections and other hookups. Then go to the appliance manufacturers’ Web sites to look at product information, and make a list of questions and “must-have” and “nice-to-have-but-not-essential” features.
Resumo:
If you haven’t been in the market for new appliances during the past several years, you’re going to be surprised at how innovative and energy-efficient appliances have become. You’ll find energy-smart appliance choices in almost all price ranges. Before heading to the local appliance retailer or “big-box” store, measure the space the new appliance will occupy to make sure it will fit—and that there’s enough room to fully open the door (or lid), as well as adequate clearances for ventilation, plumbing connections and other hookups. Then go to the appliance manufacturers’ Web sites to look at product information, and make a list of questions and “must-have” and “nice-to-have-but-not-essential” features.
Resumo:
Technological developments in microprocessors and ICT landscape have made a shift to a new era where computing power is embedded in numerous small distributed objects and devices in our everyday lives. These small computing devices are ne-tuned to perform a particular task and are increasingly reaching our society at every level. For example, home appliances such as programmable washing machines, microwave ovens etc., employ several sensors to improve performance and convenience. Similarly, cars have on-board computers that use information from many di erent sensors to control things such as fuel injectors, spark plug etc., to perform their tasks e ciently. These individual devices make life easy by helping in taking decisions and removing the burden from their users. All these objects and devices obtain some piece of information about the physical environment. Each of these devices is an island with no proper connectivity and information sharing between each other. Sharing of information between these heterogeneous devices could enable a whole new universe of innovative and intelligent applications. The information sharing between the devices is a diffcult task due to the heterogeneity and interoperability of devices. Smart Space vision is to overcome these issues of heterogeneity and interoperability so that the devices can understand each other and utilize services of each other by information sharing. This enables innovative local mashup applications based on shared data between heterogeneous devices. Smart homes are one such example of Smart Spaces which facilitate to bring the health care system to the patient, by intelligent interconnection of resources and their collective behavior, as opposed to bringing the patient into the health system. In addition, the use of mobile handheld devices has risen at a tremendous rate during the last few years and they have become an essential part of everyday life. Mobile phones o er a wide range of different services to their users including text and multimedia messages, Internet, audio, video, email applications and most recently TV services. The interactive TV provides a variety of applications for the viewers. The combination of interactive TV and the Smart Spaces could give innovative applications that are personalized, context-aware, ubiquitous and intelligent by enabling heterogeneous systems to collaborate each other by sharing information between them. There are many challenges in designing the frameworks and application development tools for rapid and easy development of these applications. The research work presented in this thesis addresses these issues. The original publications presented in the second part of this thesis propose architectures and methodologies for interactive and context-aware applications, and tools for the development of these applications. We demonstrated the suitability of our ontology-driven application development tools and rule basedapproach for the development of dynamic, context-aware ubiquitous iTV applications.
Resumo:
Providing homeowners with real-time feedback on their electricity consumption through a dedicated display device has been shown to reduce consumption by approximately 6-10%. However, recent advances in smart grid technology have enabled larger sample sizes and more representative sample selection and recruitment methods for display trials. By analyzing these factors using data from current studies, this paper argues that a realistic, large-scale conservation effect from feedback is in the range of 3-5%. Subsequent analysis shows that providing real-time feedback may not be a cost effective strategy for reducing carbon emissions in Australia, but that it may enable additional benefits such as customer retention and peak-load shift.
Resumo:
Various fall-detection solutions have been previously proposed to create a reliable surveillance system for elderly people with high requirements on accuracy, sensitivity and specificity. In this paper, an enhanced fall detection system is proposed for elderly person monitoring that is based on smart sensors worn on the body and operating through consumer home networks. With treble thresholds, accidental falls can be detected in the home healthcare environment. By utilizing information gathered from an accelerometer, cardiotachometer and smart sensors, the impacts of falls can be logged and distinguished from normal daily activities. The proposed system has been deployed in a prototype system as detailed in this paper. From a test group of 30 healthy participants, it was found that the proposed fall detection system can achieve a high detection accuracy of 97.5%, while the sensitivity and specificity are 96.8% and 98.1% respectively. Therefore, this system can reliably be developed and deployed into a consumer product for use as an elderly person monitoring device with high accuracy and a low false positive rate.
Resumo:
Faced with an imminent restructuring of the electric power system, over the past few years many countries have invested in a new paradigm known as Smart Grid. This paradigm targets optimization and automation of electric power network, using advanced information and communication technologies. Among the main communication protocols for Smart Grids we have the DNP3 protocol, which provides secure data transmission with moderate rates. The IEEE 802.15.4 is another communication protocol also widely used in Smart Grid, especially in the so-called Home Area Network (HAN). Thus, many applications of Smart Grid depends on the interaction of these two protocols. This paper proposes modeling, in the traditional network simulator NS-2, the integration of DNP3 protocol and the IEEE 802.15.4 wireless standard for low cost simulations of Smart Grid applications.
Resumo:
n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.
Resumo:
The presented work aims to contribute towards the standardization and the interoperability off the Future Internet through an open and scalable architecture design. We present S³OiA as a syntactic/semantic Service-Oriented Architecture that allows the integration of any type of object or device, not mattering their nature, on the Internet of Things. Moreover, the architecture makes possible the use of underlying heterogeneous resources as a substrate for the automatic composition of complex applications through a semantic Triple Space paradigm. Created applications are dynamic and adaptive since they are able to evolve depending on the context where they are executed. The validation scenario of this architecture encompasses areas which are prone to involve human beings in order to promote personal autonomy, such as home-care automation environments and Ambient Assisted Living.
Resumo:
Primary-care pediatricians could play a key role in early detection of development disorders as quick as they might have enough time and knowledge for suitable screenings at clinical routine. This research paper focuses on the development and validation of a knowledge-based web tool whose aim is to support a smart detection of developmental disorders in early childhood. Thus, the use of the system can trigger the necessary preventive and therapeutic actions from birth until the age of six. The platform was designed on the basis of an analysis of significant 21 cases of children with language disorders that supported the creation of a specific knowledge base, its ontology and a set of description logic relations. The resulting system is being validated in a scalable approach with a team of seven experts from the fields of neonathology, pediatrics, neurology and language therapy.
Resumo:
Smart Grids are advanced power networks that introduce intelligent management, control, and operation systems to address the new challenges generated by the growing energy demand and the appearance of renewal energies. In the literature, Smart Grids are presented as an exemplar SoS: systems composed of large heterogeneous and independent systems that leverage emergent behavior from their interaction. Smart Grids are currently scaling up the electricity service to millions of customers. These Smart Grids are known as Large-Scale Smart Grids. From the experience in several projects about Large-Scale Smart Grids, this paper defines Large-Scale Smart Grids as a SoS that integrate a set of SoS and conceptualizes the properties of this SoS. In addition, the paper defines the architectural framework for deploying the software architectures of Large-Scale Smart Grid SoS.
Resumo:
The paradigm of ubiquitous computing has become a reference for the design of Smart Spaces. Current trends in Ambient Intelligence are increasingly related to the scope of Internet of Things. This paradigm has the potential to support cost-effective solutions in the fields of telecare, e-health and Ambient Assisted Living. Nevertheless, ubiquitous computing does not provide end users with a role for proactive interactions with the environment. Thus, the deployment of smart health care services at a private space like the home is still unsolved. This PhD dissertation aims to define a person-environment interaction model to foster acceptability and users confidence in private spaces by applying the concept of user-centred security and the human performance model of seven stages of action.
Resumo:
Facing the EU energy efficiency and legal scenarios related to buildings (2010/31 EU directive), new sustainable advanced concepts for envelopes are required. These innovative designs must be able to offer an elevated level of energy efficiency based on a high performance architecture. According to this, smart glazings, and particularly active water-flow glazings, represent a promising alternative to other solar control glazings, since they can reduce the building energy demand avoiding well known drawbacks as high cost, glare problems and high response time that affect to other smart glazings. This kind of glazing, as any other active one, needs to be operated by a control system. In order to operate a water-flow based window, a new controller based on an inexpensive microcontroller board has been developed
Resumo:
There is no doubt that there is no possibility of finding a single reference about domotics in the first half of the 20th century. The best known authors and those who have documented this discipline, set its origin in the 1970’s, when the x-10 technology began to be used, but it was not until 1988 when Larousse Encyclopedia decided to include the definition of "Smart Building". Furthermore, even nowadays, there is not a single definition widely accepted, and for that reason, many other expressions, namely "Intelligent Buildings" "Domotics" "Digital Home" or "Home Automation" have appeared to describe the automated buildings and homes. The lack of a clear definition for "Smart Buildings" causes difficulty not only in the development of a common international framework to develop research in this field, but it also causes insecurity in the potential user of these buildings. That is to say, the user does not know what is offered by this kind of buildings, hindering the dissemination of the culture of building automation in society. Thus, the main purpose of this paper is to propose a definition of the expression “Smart Buildings” that satisfactorily describes the meaning of this discipline. To achieve this aim, a thorough review of the origin of the term itself and the historical background before the emergence of the phenomenon of domotics was conducted, followed by a critical discussion of existing definitions of the term "Smart Buildings" and other similar terms. The extent of each definition has been analyzed, inaccuracies have been discarded and commonalities have been compared. Throughout the discussion, definitions that bring the term "Smart Buildings" near to disciplines such as computer science, robotics and also telecommunications have been found. However, there are also many other definitions that emphasize in a more abstract way the role of these new buildings in the society and the future of mankind.
Resumo:
The Smartcity Málaga project is one of Europe?s largest ecoefficient city initiatives. The project has implemented a field trial in 50 households to study the effects of energy monitoring and management technologies on the residential electricity consumption. This poster presents some lessons learned on energy consumption trends, smart clamps reliability and the suitability of power contracted by users, obtained after six months of data analysis.