908 resultados para Small Angle X-ray Scattering (SAXS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated, by in situ small-angle X-ray scattering (SAXS), the kinetics of formation of zinc oxide colloidal suspensions obtained after refluxing alcoholic solution of zinc acetate and catalysed by lithium hydroxide. The experimental results demonstrate that the suspensions are composed of colloidal spheroidal particles with a multimodal size distribution. The average radius of the main mode, approximately 2 nm, is invariant but the number of these basic particles continuously increases for increasing hydrolysis reaction time. The other two modes correspond to particles with average radii close to 6 and 10 nm, respectively. The larger particles are formed by coagulation of the smaller ones. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xerogels obtained from the acid-catalyzed and ultrasound stimulated hydrolysis of TEOS were submitted to heat treatment at temperatures ranging from 60 to 1100 degreesC and studied by small-angle X-ray scattering (SAXS). The SAXS intensity as a function of the modulus of the scattering vector q was obtained in the range from q(0) = 0.19 to q(m) = 4.4 nm(-1). At 60 degreesC the xerogels exhibit an apparent surface fractal structure with a fractal dimension D-s similar to 2.5 in a length scale ranging from 1/q(1) similar to 1 to 1/q(m) similar to 0.22 nm. This structure becomes extremely rough at 120 degreesC (D-s similar to 3) and at 150 degreesC, it apparently converts to a mass fractal with a fractal dimension D similar to 2.4. This may mean an emptying of the pores with preservation of a share of the original mass fractal structure of the wet aged gel, for it had presented a mass fractal dimension D similar to 2.2. A well characterized porous structure formed by 2.0 nm mean size pores with smooth surface of about 380 m(2)/g is formed at 300 degreesC and remains stable until approximately 800 degreesC. At 900 degreesC the SAXS intensity vanishes indicating the disappearance of the pores in the probed length scale. The elimination of the nanopores occurs by a mechanism in which the number of pores diminishes keeping constant their mean size. The xerogels exhibit a foaming phenomenon above 900 degreesC and scatter following Porod's law as does a surface formed by a coarse structure. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of aggregation of tetraethoxysilane (TEOS)-derived silica sols, produced by acid-catalyzed and ultrasound-stimulated hydrolysis, were studied by 'in situ' measurements of small-angle X-ray scattering (SAXS) at the temperatures 40 degreesC, 60 degreesC and 70 degreesC. The results were analyzed in terms of the evolution with time (t) of the SAXS intensity probing the mass fractal characteristics of the system, the average radius of gyration (Rc,) of the clusters and the number of primary particles per cluster. The aggregation process yields mass fractal structures which exhibit a scattering exponent (alpha) practically equal to 2, in the probed length scale range (5.3 nm < 1/q < 0.22 nm), beneath and even far beyond the gel point. This suggests that a is a direct measure of the real mass fractal dimension (D) of the structure. The precursor sol (pH = 2) exhibits I nm mean sized clusters with mass fractal dimension D similar to 1.9. Increasing the pH to 4.5, the cluster mean size and the number of primary particles per cluster increase but the system keeps a more opened structure (D similar to 1.4). In the first aggregation stages, D increases up to similar to2 by incorporating primary particles to the clusters without changing their mean size. From this stage, the aggregation progresses following a thermally activated scaling law well described by R-G similar tot(1/D) in all cases. This is indicative of a diffusion-controlled cluster-cluster aggregation process. The activation energy of the process was found to be 91.7 kJ/mol. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical silica nanoparticles were prepared using a basic amino acid catalysis route and the kinetics of the particles growth was investigated by small angle X-ray scattering (SAXS). L-arginine was used in the polar aqueous phase as the basic catalyst whereas the tetraethylorthosilicate (TEOS) was dissolved in the cyclohexane oil phase as the silicate monomer source. The SAXS measurements were taken in the aqueous phase at different reaction times. A high degree of monodispersity was clearly evidenced for the spherical nanoparticles as a result of the pronounced high-order oscillations observed in the SAXS curves. The SAXS data show that the particles number density remains unchanged since both the particle size as well as the volume fraction gradually increase. This process was discussed based on a reaction-controlled addition of monomer species at the surface of the growing particles. Consequently, the monodispersed spherical nanoparticles radius can as such be finely tuned from 7 to 12 nm by varying the reaction time. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As características estruturais de sonogéis obtidos a partir da hidrólise ácida do TEOS estimulada por ultrasom foram estudadas por espalhamento de raios-x a baixo ângulo (SAXS). O estudo inclui: i) o processo de agregação em diferentes temperaturas; ii) o envelhecimento dos géis úmidos na fase líquida de preparação e depois da troca da fase líquida por álcool e acetona; iii) a secagem dos géis; iv) a estrutural evolução de xerogéis e aerogéis com o tratamento térmico até 1100 oC; e v) um estudo comparativo usando SAXS e adsorção de nitrogênio na caracterização de aerogéis e xerogéis... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small angle X-ray scattering (SAXS) technique has been used with very much versatility and success in the structural characterization of nanostructured materials. The present work deals with a study of the principles of the SAXS technique and of some classical models employed in the structural characterization of nanostructured materials. Particularly, the study of the models and of the associated methodologies is applied to a set of samples of silica gels, of varied typical structures, prepared in the Laboratório de Novos Materiais of the Departamento de Física of the IGCE. The work discusses in an introductory chapter the principles of the SAXS technique and the foundation of classical models often used in the structural characterization of materials. The classical models and the associated methodologies were applied to a variety of silica gel structures. The studies include: i) the scattering from a system of particles - Guinier's law; ii) the asymptotic scattering from a two-phase system - Porod's law; iii) systematic deviation from Porod's law - Surface Fractal; iv) heterogeneities in solids with random size distribution - DAB Model; and v) the scattering from mass fractal structures. The analyses were carried out from experimental SAXS data obtained in several opportunities at the Laboratório Nacional de Luz Síncrotron (LNLS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). DLS melting curves were measured for met-HbGp at different concentrations. SAXS temperature studies were performed for oxy-, cyanomet- and met-HbGp forms, at several pH values. At pH 5.0 and 6.0, the scattering curves are identical from 20 to 60 degrees C, and R-g is 108 angstrom, independent of the oxidation form. At pH 7.0, protein denaturation and aggregation occurs above 55 degrees C and 60 degrees C, for oxy and met-HbGp, respectively. Cyanomet-HbGp, at pH 7.0, is stable up to 60 degrees C. At alkaline pH (8.0-9.0) and higher temperature, an irreversible dissociation process is observed, with a decrease of R-g, D-max and I(0). Analysis by p(r), obtained from GNOM, and OLIGOMER, was used to fit the SAXS experimental scattering curves by a combination of theoretical curves obtained for HbLt fragments from the crystal structure. Our results show clearly the increasing contribution of smaller molecular weight fragments, as a function of increasing pH and temperature, as well as, the order of thermal stabilities: cyanomet-> oxy- > met-HbGp. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 x 42 x 42 A, combined with either a screened Coulomb, repulsive structure factor, S-SC(q), or an attractive square-well structure factor, S-SW(q). At pH = 7, BSA is negatively charged. At low ionic strength, I <0.3 M, the total interaction exhibits a decrease of the repulsive interaction when compared to the salt-free solution, as the net surface charge is screened, and the data can be fitted by assuming an ellipsoid form factor and screened Coulomb interaction. At moderate ionic strength (0.3-0.5 M), the interaction is rather weak, and a hard-sphere structure factor has been used to simulate the data with a higher volume fraction. Upon further increase of the ionic strength (I >= 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and short-range, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). DLS melting curves were measured for met-HbGp at different concentrations. SAXS temperature studies were performed for oxy-, cyanomet- and met-HbGp forms, at several pH values. At pH 5.0 and 6.0, the scattering curves are identical from 20 to 60 degrees C, and R-g is 108 angstrom, independent of the oxidation form. At pH 7.0, protein denaturation and aggregation occurs above 55 degrees C and 60 degrees C, for oxy and met-HbGp, respectively. Cyanomet-HbGp, at pH 7.0, is stable up to 60 degrees C. At alkaline pH (8.0-9.0) and higher temperature, an irreversible dissociation process is observed, with a decrease of R-g, D-max and I(0). Analysis by p(r), obtained from GNOM, and OLIGOMER, was used to fit the SAXS experimental scattering curves by a combination of theoretical curves obtained for HbLt fragments from the crystal structure. Our results show clearly the increasing contribution of smaller molecular weight fragments, as a function of increasing pH and temperature, as well as, the order of thermal stabilities: cyanomet-> oxy- > met-HbGp. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.