985 resultados para Sloths, Fossil.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of fire within Pinus-mire ecosystems is explored by focusing on a palaeoentomological investigation of the extensive burnt fossil forest preserved within the basal deposits of the raised mires of Thorne and Hatfield Moors, Humberhead Levels, eastern England. Remains of charred tree macrofossils (roots, stumps and trunks) are widely distributed across both sites, mainly comprising Pinus and Betula. Evidence from this research and elsewhere suggest fires were a common event on Pinus mires, and may indicate that such episodes played an important role in the development of raised bogs. A fire-loving (pyrophilous) insect fauna appears to have been attracted to the burnt areas and the decline and extirpation in Britain of a number of pyrophilous species (e.g. Stagetus borealis Isrealsson) suggests the former importance of this type of habitat within British Pinus-mire systems. The lack of consideration given to the role of natural fires within the British landscape is questioned and the interpretation of charcoal within mire deposits as a possible anthropogenic indicator is highlighted as an area that would benefit some reconsideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reconstruction and structure of the European Holocene “wildwood” has been the focus of considerable academic debate. The ability of palaeoecological data and particularly pollen analysis to accurately reflect the density of wildwood canopy has also been widely discussed. Fossil insects, as a proxy for vegetation and landscape structure, provide a potential approach to address this argument. Here, we present a review and re-analysis of 36 early and mid-Holocene (9500-2000 cal BC) sub-fossil beetle assemblages from Britain, examining percentage values of tree, open ground and dung beetles as well as tree host data to gain an insight into vegetation structure, the role of grazing animals in driving such structure and establish independently the importance of different types of trees and associated shading in the early Holocene “wildwood”. Open indicator beetle species are persistently present over the entire review period, although they fluctuate in importance. During the early Holocene (9500-6000 cal BC), these indicators are initially high, at levels which are not dissimilar to modern data from pasture woodland. However, during the latter stages of this and the next period, 6000-4000 cal BC, open ground and pasture indicators decline and are generally low compared with previously. Alongside this pattern, we see woodland indicators generally increase in importance, although there are significant local fluctuations. Levels of dung beetles are mostly low over these periods, with some exceptions to this pattern, especially towards the end of the Mesolithic and in floodplain areas. Host data associated with the fossil beetles indicate that trees associated with lighter canopy conditions such as oak, pine, hazel and birch are indeed important components of the tree canopy during the earlier Holocene (c. 9500-6000 cal BC), in accordance with much of the current pollen literature. Beetles associated with more shade-tolerant trees (such as lime and elm) become more frequent in the middle Holocene (6000-4000 cal BC) suggesting that at this stage the woodland canopy was less open than previously, although open ground and pasture areas appear to have persisted in some locations. The onset of agriculture (4000-2000 cal BC) coincides with significant fluctuations in woodland composition and taxa. This is presumably as a result of human impact, although here there are significant regional variations. There are also increases in the amounts of open ground represented and especially in the levels of dung beetles present in faunas, suggesting there is a direct relationship between the activities of grazing animals and the development of more open areas. One of the most striking aspects of this review is the variable nature of the landscape suggested by the palaeoecological data, particularly but not exclusively with the onset of agriculture: some earlier sites indicate high variability between levels of tree-associated species on the one hand and the open ground beetle fauna on the other, indicating that in some locations, open areas were of local significance and can be regarded as important features of the Holocene landscape. The role of grazing animals in creating these areas of openness was apparently minimal until the onset of the Neolithic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wealth of palaeoecological studies (e.g. pollen, diatoms, chironomids and macrofossils from deposits such as lakes or bogs) have revealed major as well as more subtle ecosystem changes over decadal to multimillennial timescales. Such ecosystem changes are usually assumed to have been forced by specific environmental changes. Here, we test if the observed changes in palaeoecological records may be reproduced by random simulations, and we find that simple procedures generate abrupt events, long-term trends, quasi-cyclic behaviour, extinctions and immigrations. Our results highlight the importance of replicated and multiproxy data for reliable reconstructions of past climate and environmental changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three species of fossil polyplacophoran molluscs are known from Ireland. Two species were originally described in the nineteenth century: Helminthochiton griffithi Salter in M‘Coy, 1846 and Pterochiton thomondiensis (Baily, 1859), and an articulated specimen representing a third indeterminate species, described here for the first time. Previous work on the evolutionary context of these species has relied on published illustrations and descriptions without examination of the type material. as chitons are considered rare in the fossil record, these specimens represent an interesting and important aspect of Irish palaeobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ziegler Reservoir fossil site near Snowmass Village, Colorado, provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the last interglacial period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic Be and Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~ 140 ka and > 45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (D) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of marine isotope stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biases in preservation shape the fossil record, and therefore impact on our reconstructions of past environments and biodiversity. Given the intensive recent research in the general fields of taphonomy and exceptional preservation, surprisingly, fundamental questions remain unanswered about species-level variation in skeletal preservation potential at low taxonomic levels (e.g. between genera from the same family, or between taxa from related families) across myriad groups with multi-element skeletons. Polyplacophoran molluscs (chitons sensu lato) are known from the late Cambrian to Recent, and possess a distinctive articulated scleritome consisting of eight overlapping calcareous valves. The apparent uniformity of living chitons presents an ideal model to test the potential for taphonomic biases at the alpha-taxon level. The vast majority of fossil chitons are preserved as single valves; few exhibit body preservation or even an articulated shell series. An experimental taphonomic programme was conducted using the Recent polyplacophorans Lepidochitona cinerea and Tonicella marmorea (suborder Chitonina) and Acanthochitona crinita (Acanthochitonina). Experiments in a rock tumbler on disarticulated valves found differential resistance to abrasion between taxa; in one experiment 53.8-61.5% of Lepidochitona valves were recovered but 92% of those from Tonicella and 100% of elements from Acanthochitona. Chiton valves and even partly decayed carcasses are more resistant to transportation than their limited fossil record implies. Different species of living chitons have distinctly different preservation potential. This, problematically, does not correlate with obvious differences in gross valve morphology; some, but not all, of the differences correlate with phylogeny. Decay alone is sufficient to exacerbate differences in preservation potential of multi-element skeletons; some, but not all, of the variation that results is due to specimen size and the fidelity of the fossil record will thus vary intra-specifically (e.g. between ontogenetic stages) as well as inter-specifically.