797 resultados para Slender Towers
Resumo:
This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and chaotic motion below the flutter speed are observed in this study.
Resumo:
This paper addresses the seismic analysis of a deeply embedded non-slender structure hosting the pumping unit of a reservoir. The dynamic response in this type of problems is usually studied under the assumption of a perfectly rigid structure using a sub-structuring procedure (three-step solution) proposed specifically for this hypothesis. Such an approach enables a relatively simple assessment of the importance of some key factors influencing the structural response. In this work, the problem is also solved in a single step using a direct approach in which the structure and surrounding soil are modelled as a coupled system with its actual geometry and flexibility. Results indicate that, quite surprisingly, there are significant differences among prediction using both methods. Furthermore, neglecting the flexibility of the structure leads to a significant underestimation of the spectral accelerations at certain points of the structure.
Resumo:
PUBLIC SQUARE & FOUR TOWERS, CHICLANA, CÁDIZ (2005) [Proyecto]
Resumo:
Liquids held by surface tension forces can bridge the gap between two solid bodies placed not too far apart from each other. The equilibrium conditions and stability criteria for static, cylindrical liquid bridges are well known. However, the behaviour of an unstable liquid bridge, regarding both its transition toward breaking and the resulting configuration, is a matter for discussion. The dynamical problem of axisymmetric rupture of a long liquid bridge anchored at two equal coaxial disks is treated in this paper through the adoption of one-dimensional theories which are widely used in capillary jet problems
Resumo:
The dynamics of inviscid, axisymmetric liquid bridges permits a simplified treatment if the bridge is long enough. Under such condition the evolution of the liquid zone is satisfactorily explained through a non-linear one-dimensional model. In the case of breaking, the one-dimensional model fails when the neck radius of the liquid column is close to zero; however, the model allows the calculation of the time variation of the liquid-bridge interface as well as of the fluid velocity field and, because the last part of the evolution is not needed, the overall results such as the breaking time and the volume of each of the two drops resulting after breakage can be calculated. In this paper numerical results concerning the behavior of clinical liquid bridges subjected to a small axial gravitational field are presented.
Resumo:
The stability of slender, axisymmetric liquid bridges held by surface tension forces between two coaxial, parallel solid disks having different radii is studied by using standard perturbation techniques. The results obtained show that the behaviour of such configurations becomes similar to that of liquid bridges between equal disks when subject to small axial gravity forces.
Resumo:
In this paper the dynamics of axisymmetric, slender, viscous liquid bridges having volume close to the cylindrical one, and subjected to a small gravitational field parallel to the axis of the liquid bridge, is considered within the context of one-dimensional theories. Although the dynamics of liquid bridges has been treated through a numerical analysis in the inviscid case, numerical methods become inappropriate to study configurations close to the static stability limit because the evolution time, and thence the computing time, increases excessively. To avoid this difficulty, the problem of the evolution of these liquid bridges has been attacked through a nonlinear analysis based on the singular perturbation method and, whenever possible, the results obtained are compared with the numerical ones.
Resumo:
n this paper the influence of an axial microgravity on the dynamic stability of axisymmetric slender liquid bridges between unequal disks is numerically studied by using a one-dimensional theory. The breaking of such liquid configurations is analyzed and the dependence of some overall characteristics of the breaking process on the value of axial microgravity, the geometry and the volume of the liquid bridge, as well as stability limits are obtained.
Resumo:
A one-dimensional inviscid slice model has been used to study numerically the influence of axial microgravity on the breaking of liquid bridges having a volume close to that of gravitationless minimum volume stability limit. Equilibrium shapes and stability limits have been obtained as well as the dependence of the volume of the two drops formed after breaking on both the length and the volume of the liquid bridge. The breaking process has also been studied experimentally. Good agreement has been found between theory and experiment for neutrally buoyant systems
Resumo:
Publisher's advertisements at end.
Resumo:
1 ft. 2 1/4 in.x 1 ft. 5 19/32 in.x 4 41/64 in.; copper gilt with champlevé enamel, bordered by strips of copper gilt, set with six semi-precious stones and partly decorated with vernis brun (brown varnish) on wood
Resumo:
Reprinted from the Engineers' list, March 1907.
Resumo:
Mode of access: Internet.