964 resultados para Size-dependent phase transitions
Resumo:
In the present thesis a series of exhaustive investigations have been carried out on a number of crystalline samples with special reference tx> the jphase transitions exhibited by them. These include single crystals of pure, doped or deuterated specimens of certain ammonium containing crystals viz., (NH )34H(SO4)2, (NH4)2HPO4, (NH4)2Cr2O7 znui NH4H2PO4. ac/dc electrical conductivity, dielectric constant, ionic thermocurrent as wwifil as photoacoustic measurements have been carried out on most of them over a wide range of temperature. In addition investigations have been carried out in pure and doped single crystals of NaClO3 and NaNO3 using ionic thermocurrent measurements and these are presented here. Special attention has been paid to reveal the mechanism of electrical conduction in various phases of "these crystals and to evaluate the different parameters involved in the conduction as well as phase transition process. The thesis contains ten chapters ‘
Resumo:
Silver silica nanocomposites were obtained by the sol–gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO3) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5–10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory
Resumo:
We use a microscopic theory to describe the dynamics of the valence electrons in divalent-metal clusters. The theory is based on a many-body model Harniltonian H which takes into account, on the same electronic level, the van der Waals and the covalent bonding. In order to study the ground-state properties of H we have developed an extended slave-boson method. We have studied the bonding character and the degree of electronic delocalization in Hg_n clusters as a function of cluster size. Results show that, for increasing cluster size, an abrupt change occurs in the bond character from van der Waals to covalent bonding at a critical cluster size n_c ~ 10-20. This change also involves a transition from localized to delocalized valence electrons, as a consequence of the competition between both bonding mechanisms.
Resumo:
In this work we have made significant contributions in three different areas of interest: therapeutic protein stabilization, thermodynamics of natural gas clathrate-hydrates, and zeolite catalysis. In all three fields, using our various computational techniques, we have been able to elucidate phenomena that are difficult or impossible to explain experimentally. More specifically, in mixed solvent systems for proteins we developed a statistical-mechanical method to model the thermodynamic effects of additives in molecular-level detail. It was the first method demonstrated to have truly predictive (no adjustable parameters) capability for real protein systems. We also describe a novel mechanism that slows protein association reactions, called the “gap effect.” We developed a comprehensive picture of methioine oxidation by hydrogen peroxide that allows for accurate prediction of protein oxidation and provides a rationale for developing strategies to control oxidation. The method of solvent accessible area (SAA) was shown not to correlate well with oxidation rates. A new property, averaged two-shell water coordination number (2SWCN) was identified and shown to correlate well with oxidation rates. Reference parameters for the van der Waals Platteeuw model of clathrate-hydrates were found for structure I and structure II. These reference parameters are independent of the potential form (unlike the commonly used parameters) and have been validated by calculating phase behavior and structural transitions for mixed hydrate systems. These calculations are validated with experimental data for both structures and for systems that undergo transitions from one structure to another. This is the first method of calculating hydrate thermodynamics to demonstrate predictive capability for phase equilibria, structural changes, and occupancy in pure and mixed hydrate systems. We have computed a new mechanism for the methanol coupling reaction to form ethanol and water in the zeolite chabazite. The mechanism at 400°C proceeds via stable intermediates of water, methane, and protonated formaldehyde.
Resumo:
This paper reviews Bayesian procedures for phase 1 dose-escalation studies and compares different dose schedules and cohort sizes. The methodology described is motivated by the situation of phase 1 dose-escalation studiesin oncology, that is, a single dose administered to each patient, with a single binary response ("toxicity"' or "no toxicity") observed. It is likely that a wider range of applications of the methodology is possible. In this paper, results from 10000-fold simulation runs conducted using the software package Bayesian ADEPT are presented. Four designs were compared under six scenarios. The simulation results indicate that there are slight advantages of having more dose levels and smaller cohort sizes.
Resumo:
We present a kinetic model for transformations between different self-assembled lipid structures. The model shows how data on the rates of phase transitions between mesophases of different geometries can be used to provide information on the mechanisms of the transformations and the transition states involved. This can be used, for example, to gain an insight into intermediate structures in cell membrane fission or fusion. In cases where the monolayer curvature changes on going from the initial to the final mesophase, we consider the phase transition to be driven primarily by the change in the relaxed curvature with pressure or temperature, which alters the relative curvature elastic energies of the two mesophase structures. Using this model, we have analyzed previously published kinetic data on the inter-conversion of inverse bicontinuous cubic phases in the 1-monoolein-30 wt% water system. The data are for a transition between QII(G) and QII(D) phases, and our analysis indicates that the transition state more closely resembles the QII(D) than the QII(G) phase. Using estimated values for the monolayer mean curvatures of the QII(G) and QII(D) phases of -0.123 nm(-1) and -0.133 nm(-1), respectively, gives values for the monolayer mean curvature of the transition state of between -0.131 nm(-1) and -0.132 nm(-1). Furthermore, we estimate that several thousand molecules undergo the phase transition cooperatively within one "cooperative unit", equivalent to 1-2 unit cells of QII(G) or 4-10 unit cells of QII(D).
Resumo:
The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.
Resumo:
The effect of irradiation (UV-visible light) on a nematic liquid crystal doped with a photoactive azobenzene derivative was investigated. The selective irradiation results in either an E implies Z or Z implies E isomerization of the azobenzene unit. The effect of the isomerization is to cause a reversible depression of the liquid crystal to isotropic (LC implies l) phase transition temperature of the doped mixture, which can be monitored optically as an isothermal phase transition. This depression also results in a biphasic liquid crystal+isotropic region which is discussed. The authors investigate the cause and magnitude of the phase depression as a function of the amount of doped 4-butyl-4'-methoxyazobenzene (photoactive unit) in 4-cyano-4'-n-pentylbiphenyl (liquid crystal unit), and as a function of the percentage conversion of E implies Z (caused by isomerization) in the azobenzene. The photostationary state of the doped mixtures achieved by Z implies E isomerization is considered and its effect upon the transition temperature of the mixture and response time of the system is discussed. They discuss the implications of the photostationary state with regards to the reversibility of the photo-induced phase transition and hence potential applications.
Resumo:
Three new MnIII complexes, {[Mn-2(salen)(2)(OCn)](ClO4)}(n) (1), {[Mn-2(salen)(2)(OPh)](ClO4)}(n) (2) and {[Mn-2(salen)(2)(OBz)](ClO4)}(2) (3) (where salen = N,N'-bis(salicylidene)-1,2-diaminoethane dianion, OCn = cinnamate, OPh = phenylacetate and OBz = benzoate), have been synthesized and characterized structurally and magnetically. The crystal structures reveal that all three structures contain syn-anti carboxylatebridged dimeric [Mn-2(salen)(2)(OOCR)](+) cations (OOCR = bridging carboxylate) that are joined together by weak Mn center dot center dot center dot O(phenoxo) interactions to form infinite alternating chain structures in 1 and 2, but the relatively long Mn center dot center dot center dot O(phenoxo) distance [3.621(2)angstrom] in 3 restricts this structure to tetranuclear units. Magnetic studies showed that 1 and 2 exhibited magnetic long-range order at T-N = 4.0 and 4.6 K (T-N = Neel transition temperature), respectively, to give spin-canted antiferromagnetic structures. Antiferromagnetic coupling was also observed in 3 but no peaks were recorded in the field-cooled magnetization (FCM) or zero-field-cooled magnetization (ZFCM) data, indicating that 3 remained paramagnetic down to 2 K. This dominant antiferromagnetic coupling is attributed to the carboxylate bridges. The ferromagnetic coupling expected due to the Mn-O(phenoxo)center dot center dot center dot Mn bridge plays an auxiliary role in the magnetic chain, but is an essential component of the bulk magnetic properties of the material.
Resumo:
We use new neutron scattering instrumentation to follow in a single quantitative time-resolving experiment, the three key scales of structural development which accompany the crystallisation of synthetic polymers. These length scales span 3 orders of magnitude of the scattering vector. The study of polymer crystallisation dates back to the pioneering experiments of Keller and others who discovered the chain-folded nature of the thin lamellae crystals which are normally found in synthetic polymers. The inherent connectivity of polymers makes their crystallisation a multiscale transformation. Much understanding has developed over the intervening fifty years but the process has remained something of a mystery. There are three key length scales. The chain folded lamellar thickness is ~ 10nm, the crystal unit cell is ~ 1nm and the detail of the chain conformation is ~ 0.1nm. In previous work these length scales have been addressed using different instrumention or were coupled using compromised geometries. More recently researchers have attempted to exploit coupled time-resolved small-angle and wide-angle x-ray experiments. These turned out to be challenging experiments much related to the challenge of placing the scattering intensity on an absolute scale. However, they did stimulate the possibility of new phenomena in the very early stages of crystallisation. Although there is now considerable doubt on such experiments, they drew attention to the basic question as to the process of crystallisation in long chain molecules. We have used NIMROD on the second target station at ISIS to follow all three length scales in a time-resolving manner for poly(e-caprolactone). The technique can provide a single set of data from 0.01 to 100Å-1 on the same vertical scale. We present the results using a multiple scale model of the crystallisation process in polymers to analyse the results.
Resumo:
This study considers the strength of the Northern Hemisphere Holton-Tan effect (HTE) in terms of the phase alignment of the quasi-biennial oscillation (QBO) with respect to the annual cycle. Using the ERA-40 Reanalysis, it is found that the early winter (Nov–Dec) and late winter (Feb–Mar) relation between QBO phase and the strength of the stratospheric polar vortex is optimized for subsets of the 44-year record that are chosen on the basis of the seasonality of QBO phase transitions at the 30 hPa level. The timing of phase transitions serves as a proxy for changes in the vertical structure of the QBO over the whole depth of the tropical stratosphere. The statistical significance of the Nov–Dec (Feb–Mar) HTE is greatest when 30 hPa QBO phase transitions occur 9–14 (4–9) months prior to the January of the NH winter in question. This suggests that there exists for both early and late winter a vertical structure of tropical stratospheric winds that is most effective at influencing the interannual variability of the polar vortex, and that an early (late) winter HTE is associated with an early (late) progression of QBO phase towards that structure. It is also shown that the seasonality of QBO phase transitions at 30 hPa varies on a decadal timescale, with transitions during the first half of the calendar year being relatively more common during the first half of the tropical radiosonde wind record. Combining these two results suggests that decadal changes in HTE strength could result from the changing seasonality of QBO phase transitions. Citation: Anstey, J. A., and T. G. Shepherd (2008), Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions, Geophys. Res. Lett., 35, L22810, doi:10.1029/2008GL035721.
Resumo:
Camu-camu is a tropical fruit with very high vitamin C content and commercialized as frozen pulp. Enthalpies of freezing, temperatures of the onset of ice melting, and glass transition temperatures of the maximally freeze-concentrated phase (T`(g)) of camu-camu pulp and of samples containing maltodextrin (DE20) and sucrose were measured by differential scanning calorimetry. Maltodextrin exhibited the largest freeze stabilization potential, increasing T`(g) from -58.2 degrees C (natural pulp) to -39.6 degrees C when 30% (w/w) maltodextrin DE 20 was added. Sucrose showed negligible effect on T`(g) but enhanced considerably the freezing point depression and less amount of ice was formed.
Resumo:
The aim of this work was to study the glass transition, the glass transition of the maximally freeze-concentrated fractions, the ice melting and the gelatinization phenomenon in dispersions of starch prepared using glycerol- water solutions. The starch concentration was maintained constant at 50 g cassava starch/100 g starch dispersions, but the concentration of the glycerol solutions was variable (C-g= 20, 40, 60, 80 and 100 mass/mass%). The phase transitions of these dispersions were studied by calorimetric methods, using a conventional differential scanning calorimeter (DSC) and a more sensitive equipment (micro-DSC). Apparently, in the glycerol diluted solutions (20 and 40%), the glycerol molecules interacted strongly with the glucose molecules of starch. While in the more concentrated glycerol domains (C-g> 40%), the behaviour was controlled by migration of water molecules from the starch granules, due to a hypertonic character of glycerol, which affected all phase transitions.
Resumo:
The recent discovery of a ferroelectric monoclinic phase in the PbZr1-xTixO3 (PZT) system attained the attention of several researchers due to the possibility of understanding the relationships between structural features and piezoelectric properties. The nature of the monoclinic phase in some PZT compositions remains controversial and unclear. In this work, structural phase transitions of PbZr0.52Ti0.48O3 ceramic were investigated by infrared spectroscopy as a function of temperature. Studies were centered on nu(1)-stretching modes and corresponding half width Wi as a function of temperature. The occurrence of the anomalies in the infrared spectra as a function of temperature suggests the following monoclinic ( LT) -> monoclinic ( HT) -> tetragonal phase transition were observed at 183 K and at 263 K.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)