953 resultados para Site-Directed


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C-1-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the gamma-phosphorus of ATP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relative contributions to the specificity and catalysis of aglycone, of residues E190, E194, K201 and M453 that form the aglycone-binding site of a beta-glycosidase from Spodoptera frugiperda (EC 3.2.1.21), were investigated through site-directed mutagenesis and enzyme kinetic experiments. The results showed that E190 favors the binding of the initial portion of alkyl-type aglycones (up to the sixth methylene group) and also the first glucose unit of oligosaccharidic aglycones, whereas a balance between interactions with E194 and K201 determines the preference for glucose units versus alkyl moieties. E194 favors the binding of alkyl moieties, whereas K201 is more relevant for the binding of glucose units, in spite of its favorable interaction with alkyl moieties. The three residues E190, E194 and K201 reduce the affinity for phenyl moieties. In addition, M453 favors the binding of the second glucose unit of oligosaccharidic aglycones and also of the initial portion of alkyl-type aglycones. None of the residues investigated interacted with the terminal portion of alkyl-type aglycones. It was also demonstrated that E190, E194, K201 and M453 similarly contribute to stabilize ES double dagger. Their interactions with aglycone are individually weaker than those formed by residues interacting with glycone, but their joint catalytic effects are similar. Finally, these interactions with aglycone do not influence glycone binding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Directed evolution was used to improve the thermostability of Aspergillus niger glucoamylase (GA) expressed in Saccharomyces cerevisiae. A starch-plate assay developed to screen GA mutants for thermostability gave results consistent with those of irreversible thermoinactivation kinetic analysis. Several thermostable multiply-mutated GAs were isolated and characterized by DNA sequencing and kinetic analysis. Three new GA mutations, T62A, T290A and H391Y, have been identified that encode GAs that are more thermostable than wild-type GA, and that improve thermostability cumulatively. These individual mutations were combined with the previously constructed thermostable site-directed mutations D20C/A27C (forming a disulficle bond), S30P, and G137A to create a multiply-mutated GA designated THS8. THS8 GA is substantially more thermostable than wild-type GA at 8OoC, with a 5.1 kJ/mol increase in the free energy of therrnoinactivation, making it the most thermostable Aspergillus niger GA mutant characterized to date. THS8 GA and the singly-mutated GAs have specific activities and catalytic efficiencies (k(cat)/K-m) similar to those of wild-type GA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The PsaF-deficient mutant 3bF of Chlamydomonas reinhardtii was used to modify PsaF by nuclear transformation and site-directed mutagenesis. Four lysine residues in the N-terminal domain of PsaF, which have been postulated to form the positively charged face of a putative amphipathic α-helical structure were altered to K12P, K16Q, K23Q, and K30Q. The interactions between plastocyanin (pc) or cytochrome c6 (cyt c6) and photosystem I (PSI) isolated from wild type and the different mutants were analyzed using crosslinking techniques and flash absorption spectroscopy. The K23Q change drastically affected crosslinking of pc to PSI and electron transfer from pc and cyt c6 to PSI. The corresponding second order rate constants for binding of pc and cyt c6 were reduced by a factor of 13 and 7, respectively. Smaller effects were observed for mutations K16Q and K30Q, whereas in K12P the binding was not changed relative to wild type. None of the mutations affected the half-life of the microsecond electron transfer performed within the intermolecular complex between the donors and PSI. The fact that these single amino acid changes within the N-terminal domain of PsaF have different effects on the electron transfer rate constants and dissociation constants for both electron donors suggests the existence of a rather precise recognition site for pc and cyt c6 that leads to the stabilization of the final electron transfer complex through electrostatic interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The high-molecular-weight serine proteinase inhibitors (serpins) are restricted, generally, to inhibiting proteinases of the serine mechanistic class. However, the viral serpin, cytokine response modifier A, and the human serpins, antichymotrypsin and squamous cell carcinoma antigen 1 (SCCA1), inhibit different members of the cysteine proteinase class. Although serpins employ a mobile reactive site loop (RSL) to bait and trap their target serine proteinases, the mechanism by which they inactivate cysteine proteinases is unknown. Our previous studies suggest that SCCA1 inhibits papain-like cysteine proteinases in a manner similar to that observed for serpin–serine proteinase interactions. However, we could not preclude the possibility of an inhibitory mechanism that did not require the serpin RSL. To test this possibility, we employed site-directed mutagenesis to alter the different residues within the RSL. Mutations to either the hinge or the variable region of the RSL abolished inhibitory activity. Moreover, RSL swaps between SCCA1 and the nearly identical serpin, SCCA2 (an inhibitor of chymotrypsin-like serine proteinases), reversed their target specificities. Thus, there were no unique motifs within the framework of SCCA1 that independently accounted for cysteine proteinase inhibitory activity. Collectively, these data suggested that the sequence and mobility of the RSL of SCCA1 are essential for cysteine proteinase inhibition and that serpins are likely to utilize a common RSL-dependent mechanism to inhibit both serine and cysteine proteinases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The HIV-1 transcript is alternatively spliced to over 30 different mRNAs. Whether RNA secondary structure can influence HIV-1 RNA alternative splicing has not previously been examined. Here we have determined the secondary structure of the HIV-1/BRU RNA segment, containing the alternative A3, A4a, A4b, A4c and A5 3′ splice sites. Site A3, required for tat mRNA production, is contained in the terminal loop of a stem–loop structure (SLS2), which is highly conserved in HIV-1 and related SIVcpz strains. The exon splicing silencer (ESS2) acting on site A3 is located in a long irregular stem–loop structure (SLS3). Two SLS3 domains were protected by nuclear components under splicing condition assays. One contains the A4c branch points and a putative SR protein binding site. The other one is adjacent to ESS2. Unexpectedly, only the 3′ A residue of ESS2 was protected. The suboptimal A3 polypyrimidine tract (PPT) is base paired. Using site-directed mutagenesis and transfection of a mini-HIV-1 cDNA into HeLa cells, we found that, in a wild-type PPT context, a mutation of the A3 downstream sequence that reinforced SLS2 stability decreased site A3 utilization. This was not the case with an optimized PPT. Hence, sequence and secondary structure of the PPT may cooperate in limiting site A3 utilization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crystal structures and biochemical analyses of PcrA helicase provide evidence for a model for processive DNA unwinding that involves coupling of single-stranded DNA (ssDNA) tracking to a duplex destabilization activity. The DNA tracking model invokes ATP-dependent flipping of bases between several pockets on the enzyme formed by conserved aromatic amino acid residues. We have used site-directed mutagenesis to confirm the requirement of all of these residues for helicase activity. We also demonstrate that the duplex unwinding defects correlate with an inability of certain mutant proteins to translocate effectively on ssDNA. Moreover, the results define an essential triad of residues within the ssDNA binding site that comprise the ATP-driven DNA motor itself.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors is a heterooligomeric membrane protein composed of homologous subunits. Here, the contribution of the M3-M4 loop of the NR1 subunit to the binding of glutamate and the co-agonist glycine was investigated by site-directed mutagenesis. Substitution of the phenylalanine residues at positions 735 or 736 of the M3-M4 loop produced a 15- to 30-fold reduction in apparent glycine affinity without affecting the binding of glutamate and the competitive glycine antagonist 7-chlorokynurenic acid; mutation of both residues caused a >100-fold decrease in glycine affinity. These residues are found in a C-terminal region of the M3-M4 loop that shows significant sequence similarity to bacterial amino acid-binding proteins. Epitope tagging revealed both the N-terminus and the M3-M4 loop to be exposed extracellularly, whereas a C-terminal epitope was localized intracellularly. These results indicate that the M3-M4 loop is part of the ligand-binding pocket of the NR1 subunit and provide the basis for a refined model of the glycine-binding site of the NMDA receptor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GTP cyclohydrolase I of Escherichia coli is a torus-shaped homodecamer with D5 symmetry and catalyzes a complex ring expansion reaction conducive to the formation of dihydroneopterin triphosphate from GTP. The x-ray structure of a complex of the enzyme with the substrate analog, dGTP, bound at the active site was determined at a resolution of 3 A. In the decamer, 10 equivalent active sites are present, each of which contains a 10-A deep pocket formed by surface areas of 3 adjacent subunits. The substrate forms a complex hydrogen bond network with the protein. Active site residues were modified by site-directed mutagenesis, and enzyme activities of the mutant proteins were measured. On this basis, a mechanism of the enzyme-catalyzed reaction is proposed. Cleavage of the imidazole ring is initiated by protonation of N7 by His-179 followed by the attack of water at C8 of the purine system. Cystine Cys-110 Cys-181 may be involved in this reaction step. Opening of the imidazole ring may be in concert with cleavage of the furanose ring to generate a Schiff's base from the glycoside. The gamma-phosphate of GTP may be involved in the subsequent Amadori rearrangement of the carbohydrate side chain by activating the hydroxyl group of Ser-135.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The clinical efficacy of local anesthetic and antiarrhythmic drugs is due to their voltage- and frequency-dependent block of Na+ channels. Quaternary local anesthetic analogs such as QX-314, which are permanently charged and membrane-impermeant, effectively block cardiac Na+ channels when applied from either side of the membrane but block neuronal Na+ channels only from the intracellular side. This difference in extracellular access to QX-314 is retained when rat brain rIIA Na+ channel alpha subunits and rat heart rH1 Na+ channel alpha subunits are expressed transiently in tsA-201 cells. Amino acid residues in transmembrane segment S6 of homologous domain IV (IVS6) of Na+ channel alpha subunits have important effects on block by local anesthetic drugs. Although five amino acid residues in IVS6 differ between brain rIIA and cardiac rH1, exchange of these amino acid residues by site-directed mutagenesis showed that only conversion of Thr-1755 in rH1 to Val as in rIIA was sufficient to reduce the rate and extent of block by extracellular QX-314 and slow the escape of drug from closed channels after use-dependent block. Tetrodotoxin also reduced the rate of block by extracellular QX-314 and slowed escape of bound QX-314 via the extracellular pathway in rH1, indicating that QX-314 must move through the pore to escape. QX-314 binding was inhibited by mutation of Phe-1762 in the local anesthetic receptor site of rH1 to Ala whether the drug was applied extracellularly or intracellularly. Thus, QX-314 binds to a single site in the rH1 Na+ channel alpha subunit that contains Phe-1762, whether it is applied from the extracellular or intracellular side of the membrane. Access to that site from the extracellular side of the pore is determined by the amino acid at position 1755 in the rH1 cardiac Na+ channel.