983 resultados para Single-strand conformation polymorphism
Resumo:
Replication-dependent chromosomal breakage suggests that replication forks occasionally run into nicks in template DNA and collapse, generating double-strand ends. To model replication fork collapse in vivo, I constructed phage λ chromosomes carrying the nicking site of M13 bacteriophage and infected with these substrates Escherichia coli cells, producing M13 nicking enzyme. I detected double-strand breaks at the nicking sites in λ DNA purified from these cells. The double-strand breakage depends on (i) the presence of the nicking site; (ii) the production of the nicking enzyme; and (iii) replication of the nick-containing chromosome. Replication fork collapse at nicks in template DNA explains diverse phenomena, including eukaryotic cell killing by DNA topoisomerase inhibitors and inviability of recombination-deficient vertebrate cell lines.
Resumo:
The life history of Candida albicans presents an enigma: this species is thought to be exclusively asexual, yet strains show extensive phenotypic variation. To address the population genetics of C. albicans, we developed a genetic typing method for codominant single-locus markers by screening randomly amplified DNA for single-strand conformation polymorphisms. DNA fragments amplified by arbitrary primers were initially screened for single-strand conformation polymorphisms and later sequenced using locus-specific primers. A total of 12 single base mutations and insertions were detected from six out of eight PCR fragments. Patterns of sequence-level polymorphism observed for individual strains detected considerable heterozygosity at the DNA sequence level, supporting the view that most C. albicans strains are diploid. Population genetic analyses of 52 natural isolates from Duke University Medical Center provide evidence for both clonality and recombination in C. albicans. Evidence for clonality is supported by the presence of several overrepresented genotypes, as well as by deviation of genotypic frequencies from random (Hardy-Weinberg) expectations. However, tests for nonrandom association of alleles across loci reveal less evidence for linkage disequilibrium than expected for strictly clonal populations. Although C. albicans populations are primarily clonal, evidence for recombination suggests that sexual reproduction or some other form of genetic exchange occurs in this species.
Resumo:
During Tn10 transposition, the element is excised from the donor site by double-strand cleavages at the two transposon ends. Double-strand cleavage is a central step in the nonreplicative transposition reaction of many transposons in both prokaryotes and eukaryotes. Evidence is presented to show that the Tn10 double-strand cut is made by an ordered, sequential cleavage of the two strands. The transferred strand is cut first, and then the nontransferred strand is cleaved. The single-strand nicked intermediate is seen to accumulate when Mn2+ is substituted for Mg2+ in the reaction or when certain mutant transposases are used. The fact that the transferred strand is cleaved before the non-transferred strand implies that the order of strand cleavages is not the determining factor that precludes a replicative mechanism of transposition.
Resumo:
The seeds of Theobroma cacao (cacao) are the source of cocoa, the raw material for the multi-billion dollar chocolate industry. Cacao`s two most important traits are its unique seed storage triglyceride (cocoa butter) and the flavor of its fermented beans (chocolate). The genome of T. cacao is being sequenced, and to expand the utility of the genome sequence to the improvement of cacao, we are evaluating Theobroma grandiflorum, the closest economically important species of Theobroma for its potential use in a comparative genomic study. T. grandiflorum differs from cacao in important agronomic traits such as flavor of the fermented beans, disease resistance to witches` broom and abscission of mature fruits. By comparing genomic sequences and analyzing viable inter-specific hybrids, we hope to identify the key genes that regulate cacao`s most important traits. We have investigated the utility in T. grandiflorum of three types of markers (microsatellite markers, single-strand conformational polymorphism markers and single nucleotide polymorphism (SNP) markers) developed in cacao. Through sequencing of amplicons of 12 diverse individuals of both cacao and T. grandiflorum, we have identified new intra- and inter-specific SNPs. Two markers which had no overlap of alleles between the species were used to genotype putative inter-specific hybrid seedlings. Sequence conservation was significant and species-specific differences numerous enough to suggest that comparative genomics of T. grandiflorum and T. cacao will be useful in elucidating the genetic differences that lead to a variety of important agronomic trait differences.
Resumo:
Over-expression of the c-myb gene and expression of activated forms of myb are known to transform haemopoietic cells, particularly cells of the myeloid lineage. Truncations or mutations that disrupt the negative regulatory domain (NRD) of the Myb protein confer an increased ability to transform cells. Although it has proved difficult to link mutations in c-MYB to human leukaemia, no studies investigating the presence of mutations within the c-MYB NRD have been reported. Therefore, we have performed mutational analysis of this region, using polymerase chain reaction-single-stranded conformation polymorphism and sequence analysis, in 26 patients with acute or chronic myeloid leukaemia, No mutations were detected, indicating that mutation of this region of the Myb protein is not common in the pathogenesis or progression of these diseases.
Resumo:
Spinal muscular atrophy (SMA), the leading genetic cause of death in childhood, is an autosomal recessive neuromuscular disorder characterized by progressive muscle weakness, associated with deletions of the survival motor neuron (SMN) gene identified and mapped to chromosome 5q13. SMN is present in two highly homologous copies (SMN1 and SMN2). In the general population, normal individuals (noncarriers) have at least one telomeric (SMN1) copy, and 5% of them have no copies of SMN2. Approximately 95% of SMA patients carry homologous deletions of SMN1 exon(s) 7 (and 8). SMN1 and SMN2 exons 7 and 8 differ only by 1 bp each, and SMA diagnosis might be performed by single-strand conformational polymorphism, PCR amplification followed by restriction fragment length polymorphism (RFLP), multiple ligation-dependent probe amplification, or realtime PCR of SMNs exons 7 and 8. We developed a simpler and cost-effective method to detect SMN1 exon 7 deletion based on allele-specific amplification PCR.
Resumo:
Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to similar to10 000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography.
Resumo:
The molecular events that drive the initiation and progression of ovarian adenocarcinoma are not well defined. We have investigated changes in gene expression in ovarian cancer cell lines compared to an immortalized human ovarian surface epithelial cell line (HOSE) using a cDNA array. We identified 17 genes that were under-expressed and 10 genes that were over-expressed in the cell lines compared to the HOSE cells. One of the genes under-expressed in the ovarian cancer cell lines, Id3, a transcriptional inactivator, was selected for further investigation. Id3 mRNA was expressed at reduced levels in 6 out of 9 ovarian cancer cell lines compared to the HOSE cells while at the protein level, all 7 ovarian cancer cell lines examined expressed the Id3 protein at greatly reduced levels. Expression of Id3 mRNA was also examined in primary ovarian tumours and was found in only 12/38 (32%) cases. A search was conducted far mutations of Id3 in primary ovarian cancers using single stranded conformation polymorphism (SSCP) analysis. Only one nucleotide substitution, present also in the corresponding constitutional DNA, was found in 94 ovarian tumours. Furthermore no association was found between LOH at 1p36 and lack of expression of Id3. These data suggest that Id3 is not the target of LOH at 1p36. (C) 2001 Cancer Research Campaign.
Resumo:
Seroprevalence of HCMV in Costa Rica is greater than 95% in adults; primary infections occur early in life and is the most frequent congenital infection in newborns. The objectives of this study were to determine the genetic variability and genotypes of HCMV gB gene in Costa Rica. Samples were collected from alcoholics, pregnant women, blood donors, AIDS patients, hematology-oncology (HO) children and HCMV isolates from neonates with cytomegalic inclusion disease. A semi-nested PCR system was used to obtain a product of 293-296 bp of the gB gene to be analyzed by Single Stranded Conformational Polymorphism (SSCP) and sequencing to determine the genetic polymorphic pattern and genotypes, respectively. AIDS patients showed the highest polymorphic diversity with 14 different patterns while fifty-six percent of HO children samples showed the same polymorphic pattern, suggesting in this group a possible nosocomial infection. In neonates three genotypes (gB1, gB2 and gB3), were determined while AIDS patients and blood donors only showed one (gB2). Of all samples analyzed only genotypes gB1, 2 and 3 were determined, genotype gB2 was the most frequent (73%) and mixed infections were not detected. The results of the study indicate that SSCP could be an important tool to detect HCMV intra-hospital infections and suggests a need to include additional study populations to better determine the genotype diversity and prevalence.
Resumo:
OBJECTIVE: To determine the spectrum of MEN1 mutations in Portuguese kindreds, and identify mutation-carriers. PATIENTS, DESIGN AND RESULTS: Six unrelated MEN1 families were studied for MEN1 gene mutations by single-strand conformational polymorphism (SSCP) and DNA sequence analysis of the coding region and exon-intron boundaries of the MEN1 gene. These methods identified 4 different heterozygous mutations in four families: two mutations are novel (mt 1539 delG and mt 655 ims 11 bp) and two have been previously observed (mt 735 del 46p and mt 1656 del C) all resulting in a premature stop codon. In the remaining two families, in whom no mutations or abnormal MEN1 transcripts were detected, segregation studies of the 5' intragenic marker D11S4946 and codon 418 polymorphism in exon 9 revealed two large germline deletions of the MEN1 gene. Southern blot and tumour loss of heterozygosity analysis confirmed and refined the limits of these deletions, which spanned the MEN1 gene at least from: exon 7 to the 3' untranslated region, in one family, and the 5' polymorphic site D11S4946 to exon 9 (obliterating the initiation codon), in the other family. Twenty-six mutant-gene carriers were identified, 6 of which were asymptomatic. CONCLUSIONS: These results emphasize the importance of the detection of MEN1 germline deletions in patients who do not have mutations of the coding region. Important clues indicating the presence of such deletions may be obtained by segregation studies using the intragenic polymorphisms D11S4946 and at codon 418. The detection of these mutations will help in the genetic counselling of clinical management of the MEN1 families in Portugal.
Resumo:
Periodic drought is the primary limitation of plant growth and crop yield. The rise of water demand caused by the increase in world population and climate change, leads to one of the biggest challenges of modern agriculture: to increase food and feed production. De novo DNA methylation is a process regulated by small interfering RNA (siRNAs), which play a role in plant response and adaptation to abiotic stress. In the particular case of water deficit, growing evidences suggest a link between the siRNA pathways and drought response in the model legume Medicago truncatula. As a first step to understand the role of DNA methylation under water stress, we have set up several bioinformatics and molecular methodologies allowing the design of Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems and the assembly of TALENs (transcription activator-like effector nucleases), to target both dicer-like 3 (MtDCL3) and RNA-Dependent RNA polymerase (MtRDR2), enzymes of the RNA-directed DNA methylation pathway. TALENs efficiency was evaluated prior to plant transformation by a yeast-based assay using two different strategies to test TALENs activity: Polyacrylamide gel electrophoresis (PAGE) and Single strand conformation polymorphisms (SSCP). In this assay, yeast cells triple transformation emerged as good and rapid alternative to laborious yeast mating strategies. PAGE analysis might be a valuable tool to test TALENs efficacy in vivo if we could increase TALENs activity. SSCP-based approach proved to be ineffective due to the generation of several false positives. TALENs and CRISPR/Cas9 system constructed and designed in this work will in the future certainly enable the successful disruption of DCL3 and RDR2 genes and shed the light on the relationship between plant stress resistance and epigenetic regulation mediated by siRNAs in M.truncatula.
Resumo:
Lynch syndrome is one of the most common hereditary colorectal cancer (CRC) syndrome and is caused by germline mutations of MLH1, MSH2 and more rarely MSH6, PMS2, MLH3 genes. Whereas the absence of MSH2 protein is predictive of Lynch syndrome, it is not the case for the absence of MLH1 protein. The purpose of this study was to develop a sensitive and cost effective algorithm to select Lynch syndrome cases among patients with MLH1 immunohistochemical silencing. Eleven sporadic CRC and 16 Lynch syndrome cases with MLH1 protein abnormalities were selected. The BRAF c.1799T> A mutation (p.Val600Glu) was analyzed by direct sequencing after PCR amplification of exon 15. Methylation of MLH1 promoter was determined by Methylation-Sensitive Single-Strand Conformation Analysis. In patients with Lynch syndrome, there was no BRAF mutation and only one case showed MLH1 methylation (6%). In sporadic CRC, all cases were MLH1 methylated (100%) and 8 out of 11 cases carried the above BRAF mutation (73%) whereas only 3 cases were BRAF wild type (27%). We propose the following algorithm: (1) no further molecular analysis should be performed for CRC exhibiting MLH1 methylation and BRAF mutation, and these cases should be considered as sporadic CRC; (2) CRC with unmethylated MLH1 and negative for BRAF mutation should be considered as Lynch syndrome; and (3) only a small fraction of CRC with MLH1 promoter methylation but negative for BRAF mutation should be true Lynch syndrome patients. These potentially Lynch syndrome patients should be offered genetic counselling before searching for MLH1 gene mutations.
Resumo:
ABSTRACT : Background: Inactivation of tumour-related genes by promoter hypermethylation is a common epigenetic event in the development of a variety of tumours. Aim: To investigate in primary uveal melanoma the status of promoter methylation of genes thought to be involved in tumour development: p16, TIMP3, RASSF1, RARB, FHIT, hTERT and APC. Methods: Gene promoter methylation was studied by methylation-sensitive single-strand conformation analysis and dot-blot assay in a series of 23 primary uveal melanomas. All DNA samples were obtained from paraffin-embedded formalin-fixed tissue blocks. Results: hTERT promoter methylation was found with a relatively high frequency (52%). Promoter methylation of p16, TIMP3, RASSF1, RARB, FHIT and APC was a rare event. For none of these genes did promoter methylation exceed 15% of tumour samples, and, for some genes (FHIT and APC), no methylation was found at all. Furthermore, promoter methylation was absent in 39% (9/ 23) of cases. In only 22% (5/23) of cases was hypermethylation of at least two promoters observed. Conclusions: Promoter methylation of hTERT is a regular event in uveal melanoma. Hypermethylation of the other genes studied does not seem to be an essential element in the development of this tumour. As promoter methylation of APC, RASSF1 and RARB is often observed in cutaneous melanoma, these results suggest that different epigenetic events occur in the development of cutaneous and uveal melanoma. RAPPORT DE SYNTHESE : L'inactivation de gènes par une hyperméthylation de leur promoteur apparaît être un événement épigénétique fréquent, se retrouvant dans de nombreuses tumeurs. Dans cette étude, nous avons investigué dans des mélanomes primaires de l'uvée l'état de méthylation du promoteur de gènes fréquemment impliqués dans le développent tumoral tels que p16, TIMP3, RASSFI, RARB, FHIT, hTERT et APC. La méthylation des promoteurs de gènes a été étudiée par methylationsensitive single-strand conformation analysis (MS-SSCA) et dot blot assay (MS-DBA) dans une série de 23 mélanomes primaires de l'uvée. Tous les échantillons tissulaires provenaient de matériel fixé dans le formol et conservé dans des blocs de parraffine. Nous avons identifié une fréquence relativement élevée (52%) pour la méthylation du promoteur de hTERT. En ce qui concerne le reste des gènes étudiés, nous avons retrouvé des fréquences de méthylation de promoteurs relativement basses avec 13% pour RASSF1, 13% pour RARB 13%, 9% pour TIMP3 et 4% pour p16. Nous n'avons pas retrouvé d'hyperméthylation des promoteurs des gènes APC et FRIT. La méthylation de hTERT apparaît être un événement important dans la biologie du mélanome de l'uvée. L'hyperméthylation des autres gènes évalués ne semble pas être cruciale dans le développent de cette tumeur. Comme la méthylation des promoteurs des gènes APC, RASSF1 et RARB a été fréquemment observée dans le mélanome de la peau, notre étude tend à démontrer que des mécanismes épigénétiques différents surviennent dans le développement respectif de ces tumeurs.
Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis
Resumo:
A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s) by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s) that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR) in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.
Resumo:
Transcriptional deregulation in cancer has been shown to be associated with epigenetic alterations, in particular to tumor-suppressor- gene (TSG) promoters. In contrast, DNA methylation of TSGs is not considered to be present in normal differentiated cells. Nevertheless, we previously showed that the promoter of the tumor-suppressor gene APC is methylated, for one allele only, in normal gastric cells. Recently, RASSF1A has been shown to be imprinted in normal human placenta. To clarify putative TSG methylation in the placenta, 23 normal placental tissues from the first trimester, both decidua and villi, and four normal non-gestational endometrium were screened for DNA methylation by methylation-sensitive single-strand conformation analysis (MS-SSCA) and sequencing after bisulfite modification, on a panel of 12 genes known to be implicated in carcinogenesis. In all placental villi, four TSG promoters-APC, SFRP2, RASSF1A and WIF1-were hypermethylated, whereas all decidua and normal endometrium did not show any methylation. Allele-specific methylation analysis revealed that this methylation was monoallelic. Furthermore, comparison with maternal DNA indicated that APC and WIF1 were methylated on the maternal allele, whereas SFRP2 was methylated on the paternal allele. Sequence analysis of WIF1 mRNA revealed that only the unmethylated paternal allele was transcribed. The imprinting status of these TSGs is conserved during pregnancy. These results indicate that TSG imprinting is pre-existent in normal human placenta and should not be confused with carcinogenesis or pathology-induced methylation.